|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_id = "Seunggg/lora-plant" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto") |
|
|
|
|
|
def plant_chat(user_input): |
|
prompt = f"用户提问:{user_input}\n请用人性化语言回答,并推荐相关的植物资料或文献:\n回答:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=256) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return answer |
|
|
|
|
|
gr.Interface(fn=plant_chat, |
|
inputs="text", |
|
outputs="text", |
|
title="🌿 植物问答助手", |
|
description="根据你的问题,提供植物养护建议和文献线索。").launch() |
|
|