000 / app.py
Seunggg's picture
Update app.py
8f62c1d verified
raw
history blame
1.03 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# 你自己的模型 repo
model_id = "Seunggg/lora-plant"
# 加载模型和 tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto")
# 定义接口函数
def plant_chat(user_input):
prompt = f"用户提问:{user_input}\n请用人性化语言回答,并推荐相关的植物资料或文献:\n回答:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# 启动 Gradio 接口
gr.Interface(fn=plant_chat,
inputs="text",
outputs="text",
title="🌿 植物问答助手",
description="根据你的问题,提供植物养护建议和文献线索。").launch()