import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 你自己的模型 repo model_id = "Seunggg/lora-plant" # 加载模型和 tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto") # 定义接口函数 def plant_chat(user_input): prompt = f"用户提问:{user_input}\n请用人性化语言回答,并推荐相关的植物资料或文献:\n回答:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer # 启动 Gradio 接口 gr.Interface(fn=plant_chat, inputs="text", outputs="text", title="🌿 植物问答助手", description="根据你的问题,提供植物养护建议和文献线索。").launch()