File size: 1,032 Bytes
fd45282 c0ba1b5 8f62c1d fd45282 8f62c1d fd45282 8f62c1d c0ba1b5 8f62c1d fd45282 8f62c1d c0ba1b5 8f62c1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# 你自己的模型 repo
model_id = "Seunggg/lora-plant"
# 加载模型和 tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto")
# 定义接口函数
def plant_chat(user_input):
prompt = f"用户提问:{user_input}\n请用人性化语言回答,并推荐相关的植物资料或文献:\n回答:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# 启动 Gradio 接口
gr.Interface(fn=plant_chat,
inputs="text",
outputs="text",
title="🌿 植物问答助手",
description="根据你的问题,提供植物养护建议和文献线索。").launch()
|