Spaces:
Build error
Build error
File size: 8,465 Bytes
2dd154f 0250a5e bd113ad 2dd154f 0250a5e 2dd154f 0250a5e eb9cf96 bd113ad 2dd154f 0250a5e bd113ad 0250a5e bd113ad 0250a5e 2dd154f 0250a5e 2dd154f 0250a5e 341dbbe 0250a5e 2dd154f 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e bd113ad 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe 0250a5e 341dbbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch
from PIL import Image
# Configuration
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load base model
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)
# Load transformer
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
).to('cuda')
# Initialize pipeline
pipe = HunyuanVideoPipeline.from_pretrained(
ckp_path,
transformer=transformer,
torch_dtype=torch.float16
).to("cuda")
# Configure VAE
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()
# Available LORAs with display names
LORA_CHOICES = [
("stripe_v2.safetensors", "Stripe Style"),
("Top_Off.safetensors", "Top Off Effect"),
("huanyan_helper.safetensors", "Hunyuan Helper"),
("huanyan_helper_alpha.safetensors", "Hunyuan Alpha"),
("hunyuan-t-solo-v1.0.safetensors", "Solo Animation")
]
# Load all LORAs with hunyuanvideo-lora adapter
for weight_name, display_name in LORA_CHOICES:
pipe.load_lora_weights(
"Sergidev/TTV4ME",
weight_name=weight_name,
adapter_name=display_name.replace(" ", "_").lower(),
token=os.environ.get("HF_TOKEN")
)
# Memory cleanup
gc.collect()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=300)
def generate(
prompt,
image_input,
height,
width,
num_frames,
num_inference_steps,
seed_value,
fps,
selected_loras,
lora_weights,
progress=gr.Progress(track_tqdm=True)
):
# Validate image resolution
if image_input is not None:
img = Image.open(image_input)
if img.size != (width, height):
raise gr.Error(f"Image resolution {img.size} must match video resolution ({width}x{height})")
# Configure LORAs
active_adapters = [lora[1].replace(" ", "_").lower() for lora in LORA_CHOICES if lora[1] in selected_loras]
weights = [float(lora_weights[selected_loras.index(lora[1])]) for lora in LORA_CHOICES if lora[1] in selected_loras]
pipe.set_adapters(active_adapters, weights)
with torch.cuda.device(0):
if seed_value == -1:
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator('cuda').manual_seed(seed_value)
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
output = pipe(
prompt=prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
).frames[0]
output_path = "output.mp4"
export_to_video(output, output_path, fps=fps)
torch.cuda.empty_cache()
gc.collect()
return output_path
def apply_preset(preset_name, *current_values):
if preset_name == "Higher Resolution":
return [608, 448, 24, 29, 12]
elif preset_name == "More Frames":
return [512, 320, 42, 27, 14]
return current_values
css = """
/* Existing CSS remains unchanged */
.lora-sliders {
margin-top: 15px;
border-top: 1px solid #444;
padding-top: 15px;
}
"""
with gr.Blocks(css=css, theme="dark") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
gr.Markdown(
"""Generate videos from text or images using multiple LoRA adapters.
Requires matching resolution between input image and output settings.""",
elem_classes=["description"]
)
with gr.Column(elem_classes=["prompt-container"]):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter text prompt or upload image below",
show_label=False,
elem_classes=["prompt-textbox"],
lines=3
)
image_input = gr.Image(type="filepath", label="Upload Image (Optional)")
with gr.Row():
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Row(elem_classes=["preset-buttons"]):
preset_high_res = gr.Button("📺 Higher Resolution Preset")
preset_more_frames = gr.Button("🎞️ More Frames Preset")
with gr.Row():
result = gr.Video(label="Generated Video")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(
label="Seed (-1 for random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=608,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=448,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of frames",
minimum=1.0,
maximum=257.0,
step=1,
value=24,
)
num_inference_steps = gr.Slider(
label="Inference steps",
minimum=1,
maximum=50,
step=1,
value=29,
)
fps = gr.Slider(
label="Frames per second",
minimum=1,
maximum=60,
step=1,
value=12,
)
with gr.Column(elem_classes=["lora-sliders"]):
gr.Markdown("### LoRA Adapters")
lora_checkboxes = gr.CheckboxGroup(
label="Select LoRAs",
choices=[display for (_, display) in LORA_CHOICES],
value=["Stripe Style", "Top Off Effect"]
)
lora_weight_sliders = []
for _, display_name in LORA_CHOICES:
lora_weight_sliders.append(
gr.Slider(
label=f"{display_name} Weight",
minimum=0.0,
maximum=1.0,
value=0.9 if "Stripe" in display_name else 0.8,
visible=False
)
)
# Event handling
run_button.click(
fn=generate,
inputs=[prompt, image_input, height, width, num_frames,
num_inference_steps, seed, fps, lora_checkboxes, lora_weight_sliders],
outputs=[result],
)
# Preset button handlers
preset_high_res.click(
fn=lambda: apply_preset("Higher Resolution"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
preset_more_frames.click(
fn=lambda: apply_preset("More Frames"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
# Show/hide LORA weight sliders based on checkbox selection
def toggle_lora_sliders(selected_loras):
updates = []
for lora in LORA_CHOICES:
updates.append(gr.update(visible=lora[1] in selected_loras))
return updates
lora_checkboxes.change(
fn=toggle_lora_sliders,
inputs=lora_checkboxes,
outputs=lora_weight_sliders
)
|