Spaces:
Build error
Build error
v2 p2
Browse files- demo_app.py +70 -173
- requirements.txt +7 -8
- utils.py +2 -18
demo_app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
import torch
|
6 |
-
from PIL import Image
|
7 |
-
from pathlib import Path
|
8 |
from diffusers import HunyuanVideoPipeline
|
9 |
from huggingface_hub import snapshot_download
|
|
|
|
|
10 |
|
11 |
# Configuration
|
12 |
LORA_CHOICES = [
|
@@ -27,32 +26,18 @@ pipe = HunyuanVideoPipeline.from_pretrained(
|
|
27 |
torch_dtype=torch.float16
|
28 |
).to("cuda")
|
29 |
|
30 |
-
# Load
|
31 |
for lora_file in LORA_CHOICES:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
)
|
39 |
-
except Exception as e:
|
40 |
-
print(f"Error loading {lora_file}: {str(e)}")
|
41 |
|
42 |
@spaces.GPU(duration=300)
|
43 |
-
def generate(
|
44 |
-
|
45 |
-
image_input,
|
46 |
-
height,
|
47 |
-
width,
|
48 |
-
num_frames,
|
49 |
-
num_inference_steps,
|
50 |
-
seed_value,
|
51 |
-
fps,
|
52 |
-
selected_loras,
|
53 |
-
lora_weights,
|
54 |
-
progress=gr.Progress(track_tqdm=True)
|
55 |
-
):
|
56 |
# Image validation
|
57 |
if image_input is not None:
|
58 |
img = Image.open(image_input)
|
@@ -68,157 +53,69 @@ def generate(
|
|
68 |
active_adapters.append(LORA_CHOICES[idx].split('.')[0])
|
69 |
adapter_weights.append(lora_weights[idx])
|
70 |
|
71 |
-
|
72 |
-
pipe.set_adapters(active_adapters, adapter_weights)
|
73 |
-
|
74 |
-
# Generation logic
|
75 |
-
torch.cuda.empty_cache()
|
76 |
-
if seed_value == -1:
|
77 |
-
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
|
78 |
-
|
79 |
-
generator = torch.Generator('cuda').manual_seed(seed_value)
|
80 |
-
|
81 |
-
try:
|
82 |
-
if image_input:
|
83 |
-
output = pipe.image_to_video(
|
84 |
-
Image.open(image_input).convert("RGB"),
|
85 |
-
prompt=prompt,
|
86 |
-
height=height,
|
87 |
-
width=width,
|
88 |
-
num_frames=num_frames,
|
89 |
-
num_inference_steps=num_inference_steps,
|
90 |
-
generator=generator,
|
91 |
-
)
|
92 |
-
else:
|
93 |
-
output = pipe.text_to_video(
|
94 |
-
prompt=prompt,
|
95 |
-
height=height,
|
96 |
-
width=width,
|
97 |
-
num_frames=num_frames,
|
98 |
-
num_inference_steps=num_inference_steps,
|
99 |
-
generator=generator,
|
100 |
-
)
|
101 |
-
|
102 |
-
return output.video
|
103 |
-
finally:
|
104 |
-
torch.cuda.empty_cache()
|
105 |
-
|
106 |
-
def apply_preset(preset_name):
|
107 |
-
if preset_name == "Higher Resolution":
|
108 |
-
return [608, 448, 24, 29, 12]
|
109 |
-
elif preset_name == "More Frames":
|
110 |
-
return [512, 320, 42, 27, 14]
|
111 |
-
return [512, 512, 24, 25, 12]
|
112 |
-
|
113 |
-
css = """
|
114 |
-
/* Existing CSS remains unchanged */
|
115 |
-
"""
|
116 |
-
|
117 |
-
with gr.Blocks(css=css, theme="dark") as demo:
|
118 |
-
with gr.Column(elem_id="col-container"):
|
119 |
-
gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
|
120 |
-
gr.Markdown(
|
121 |
-
"""Text-to-Video & Image-to-Video generation with multiple LoRA adapters.<br>
|
122 |
-
Ensure image resolution matches selected video dimensions.""",
|
123 |
-
elem_classes=["description"]
|
124 |
-
)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
label="Prompt",
|
129 |
-
placeholder="Enter text prompt or describe the image...",
|
130 |
-
elem_classes=["prompt-textbox"],
|
131 |
-
lines=3
|
132 |
-
)
|
133 |
-
image_input = gr.Image(
|
134 |
-
label="Upload Reference Image (Optional)",
|
135 |
-
type="filepath",
|
136 |
-
visible=True
|
137 |
-
)
|
138 |
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
|
146 |
with gr.Row():
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
with gr.Row():
|
176 |
-
num_frames = gr.Slider(
|
177 |
-
label="Frame Count",
|
178 |
-
minimum=1,
|
179 |
-
maximum=257,
|
180 |
-
step=1,
|
181 |
-
value=24,
|
182 |
-
)
|
183 |
-
num_inference_steps = gr.Slider(
|
184 |
-
label="Inference Steps",
|
185 |
-
minimum=1,
|
186 |
-
maximum=50,
|
187 |
-
step=1,
|
188 |
-
value=25,
|
189 |
-
)
|
190 |
-
fps = gr.Slider(
|
191 |
-
label="FPS",
|
192 |
-
minimum=1,
|
193 |
-
maximum=60,
|
194 |
-
step=1,
|
195 |
-
value=12,
|
196 |
-
)
|
197 |
-
|
198 |
-
with gr.Accordion("🧩 LoRA Configuration", open=False):
|
199 |
-
lora_checkboxes = []
|
200 |
-
lora_sliders = []
|
201 |
-
for lora in LORA_CHOICES:
|
202 |
-
with gr.Row():
|
203 |
-
cb = gr.Checkbox(label=f"Enable {lora}", value=False)
|
204 |
-
sl = gr.Slider(0.0, 1.0, value=0.8, label=f"{lora} Weight")
|
205 |
-
lora_checkboxes.append(cb)
|
206 |
-
lora_sliders.append(sl)
|
207 |
-
|
208 |
-
# Event handling
|
209 |
-
run_button.click(
|
210 |
fn=generate,
|
211 |
-
inputs=[prompt, image_input,
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
preset_high_res.click(
|
217 |
-
fn=lambda: apply_preset("Higher Resolution"),
|
218 |
-
outputs=[height, width, num_frames, num_inference_steps, fps]
|
219 |
-
)
|
220 |
-
|
221 |
-
preset_more_frames.click(
|
222 |
-
fn=lambda: apply_preset("More Frames"),
|
223 |
-
outputs=[height, width, num_frames, num_inference_steps, fps]
|
224 |
)
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
import torch
|
|
|
|
|
5 |
from diffusers import HunyuanVideoPipeline
|
6 |
from huggingface_hub import snapshot_download
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
|
10 |
# Configuration
|
11 |
LORA_CHOICES = [
|
|
|
26 |
torch_dtype=torch.float16
|
27 |
).to("cuda")
|
28 |
|
29 |
+
# Load LoRA adapters
|
30 |
for lora_file in LORA_CHOICES:
|
31 |
+
pipe.load_lora_weights(
|
32 |
+
"Sergidev/TTV4ME",
|
33 |
+
weight_name=lora_file,
|
34 |
+
adapter_name=lora_file.split('.')[0],
|
35 |
+
token=os.environ.get("HF_TOKEN")
|
36 |
+
)
|
|
|
|
|
|
|
37 |
|
38 |
@spaces.GPU(duration=300)
|
39 |
+
def generate(prompt, image_input, height, width, num_frames,
|
40 |
+
num_inference_steps, seed_value, fps, selected_loras, lora_weights):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Image validation
|
42 |
if image_input is not None:
|
43 |
img = Image.open(image_input)
|
|
|
53 |
active_adapters.append(LORA_CHOICES[idx].split('.')[0])
|
54 |
adapter_weights.append(lora_weights[idx])
|
55 |
|
56 |
+
pipe.set_adapters(active_adapters, adapter_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Generate video
|
59 |
+
generator = torch.Generator('cuda').manual_seed(seed_value if seed_value != -1 else torch.seed())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
if image_input:
|
62 |
+
output = pipe.image_to_video(
|
63 |
+
Image.open(image_input).convert("RGB"),
|
64 |
+
prompt=prompt,
|
65 |
+
height=height,
|
66 |
+
width=width,
|
67 |
+
num_frames=num_frames,
|
68 |
+
num_inference_steps=num_inference_steps,
|
69 |
+
generator=generator,
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
output = pipe.text_to_video(
|
73 |
+
prompt=prompt,
|
74 |
+
height=height,
|
75 |
+
width=width,
|
76 |
+
num_frames=num_frames,
|
77 |
+
num_inference_steps=num_inference_steps,
|
78 |
+
generator=generator,
|
79 |
+
)
|
80 |
|
81 |
+
return output.frames[0]
|
82 |
+
|
83 |
+
with gr.Blocks(theme="dark") as demo:
|
84 |
+
with gr.Column():
|
85 |
+
gr.Markdown("# 🎬 Hunyuan Studio")
|
86 |
|
87 |
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
prompt = gr.Textbox(label="Prompt")
|
90 |
+
image_input = gr.Image(label="Input Image", type="filepath")
|
91 |
+
|
92 |
+
with gr.Accordion("Advanced Settings"):
|
93 |
+
resolution = gr.Dropdown(
|
94 |
+
choices=["512x512", "768x768", "1024x1024"],
|
95 |
+
value="512x512",
|
96 |
+
label="Output Resolution"
|
97 |
+
)
|
98 |
+
seed = gr.Slider(-1, MAX_SEED, value=-1, label="Seed")
|
99 |
+
num_frames = gr.Slider(1, 257, 24, label="Frame Count")
|
100 |
+
num_inference_steps = gr.Slider(1, 50, 25, label="Inference Steps")
|
101 |
+
fps = gr.Slider(1, 60, 12, label="FPS")
|
102 |
+
|
103 |
+
with gr.Accordion("LoRA Configuration"):
|
104 |
+
lora_components = []
|
105 |
+
for lora in LORA_CHOICES:
|
106 |
+
lora_components.append(gr.Checkbox(label=f"Enable {lora}"))
|
107 |
+
lora_components.append(gr.Slider(0.0, 1.0, 0.8, label=f"{lora} Weight"))
|
108 |
+
|
109 |
+
generate_btn = gr.Button("Generate Video")
|
110 |
+
|
111 |
+
with gr.Column():
|
112 |
+
output_video = gr.Video(label="Result")
|
113 |
+
|
114 |
+
generate_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
fn=generate,
|
116 |
+
inputs=[prompt, image_input,
|
117 |
+
gr.Number(512), gr.Number(512), # Height/width from resolution
|
118 |
+
num_frames, num_inference_steps, seed, fps,
|
119 |
+
*lora_components],
|
120 |
+
outputs=output_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
requirements.txt
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
-
diffusers
|
3 |
-
transformers
|
4 |
-
gradio>=4.0.0
|
5 |
torch>=2.4.0,<2.6.0
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
10 |
Pillow>=10.2.0
|
11 |
numpy<2.0
|
12 |
-
accelerate>=0.30.0
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
+
git+https://github.com/huggingface/diffusers.git@main
|
3 |
+
git+https://github.com/huggingface/transformers.git@main
|
|
|
4 |
torch>=2.4.0,<2.6.0
|
5 |
+
gradio>=4.0.0
|
6 |
+
safetensors
|
7 |
+
huggingface_hub
|
8 |
+
imageio
|
9 |
+
opencv-python-headless
|
10 |
Pillow>=10.2.0
|
11 |
numpy<2.0
|
|
utils.py
CHANGED
@@ -1,25 +1,9 @@
|
|
1 |
def install_packages():
|
2 |
import subprocess
|
3 |
import sys
|
4 |
-
import importlib
|
5 |
-
|
6 |
-
required = [
|
7 |
-
'torch>=2.4.0,<2.6.0',
|
8 |
-
'diffusers',
|
9 |
-
'transformers',
|
10 |
-
'gradio',
|
11 |
-
'safetensors',
|
12 |
-
'huggingface_hub',
|
13 |
-
'imageio',
|
14 |
-
'opencv-python-headless',
|
15 |
-
'Pillow'
|
16 |
-
]
|
17 |
|
18 |
subprocess.run([
|
19 |
sys.executable, "-m", "pip", "install",
|
20 |
-
"
|
|
|
21 |
], check=True)
|
22 |
-
|
23 |
-
subprocess.run([
|
24 |
-
sys.executable, "-m", "pip", "install"
|
25 |
-
] + required, check=True)
|
|
|
1 |
def install_packages():
|
2 |
import subprocess
|
3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
subprocess.run([
|
6 |
sys.executable, "-m", "pip", "install",
|
7 |
+
"-r", "requirements.txt",
|
8 |
+
"--upgrade"
|
9 |
], check=True)
|
|
|
|
|
|
|
|