Spaces:
Build error
Build error
alpha v2
Browse files- app.py +1 -2
- demo_app.py +122 -176
- requirements.txt +10 -46
- utils.py +18 -33
app.py
CHANGED
@@ -2,6 +2,5 @@ from utils import install_packages
|
|
2 |
|
3 |
if __name__ == "__main__":
|
4 |
install_packages()
|
5 |
-
|
6 |
from demo_app import demo
|
7 |
-
demo.queue(max_size=
|
|
|
2 |
|
3 |
if __name__ == "__main__":
|
4 |
install_packages()
|
|
|
5 |
from demo_app import demo
|
6 |
+
demo.queue(max_size=15).launch()
|
demo_app.py
CHANGED
@@ -1,272 +1,218 @@
|
|
1 |
import spaces
|
2 |
-
import gc
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import os
|
|
|
|
|
6 |
from pathlib import Path
|
7 |
-
from diffusers import
|
8 |
-
from diffusers.utils import export_to_video
|
9 |
from huggingface_hub import snapshot_download
|
10 |
-
import torch
|
11 |
|
12 |
# Configuration
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
model_id = "hunyuanvideo-community/HunyuanVideo"
|
21 |
-
base_path = f"/home/user/app/{model_id}"
|
22 |
-
os.makedirs(base_path, exist_ok=True)
|
23 |
-
snapshot_download(repo_id=model_id, local_dir=base_path)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
|
28 |
-
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
|
29 |
-
transformer = HunyuanVideoTransformer3DModel.from_single_file(
|
30 |
-
transformer_path,
|
31 |
-
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
32 |
-
torch_dtype=torch.bfloat16,
|
33 |
-
).to('cuda')
|
34 |
|
35 |
-
# Initialize pipeline
|
|
|
36 |
pipe = HunyuanVideoPipeline.from_pretrained(
|
37 |
-
|
38 |
-
transformer=transformer,
|
39 |
torch_dtype=torch.float16
|
40 |
).to("cuda")
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
pipe.
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
|
55 |
-
pipe.load_lora_weights(
|
56 |
-
"Sergidev/TTV4ME", # Private repository
|
57 |
-
weight_name="Top_Off.safetensors",
|
58 |
-
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
|
59 |
-
)
|
60 |
-
|
61 |
-
pipe.load_lora_weights(
|
62 |
-
"sergidev/IllustrationTTV",
|
63 |
-
weight_name="hunyuan_flat_color_v2.safetensors",
|
64 |
-
adapter_name="hyvid_lora_adapter"
|
65 |
-
)
|
66 |
-
|
67 |
-
# Set combined adapter weights
|
68 |
-
pipe.set_adapters(["hunyuanvideo-lora", "hyvid_lora_adapter"], [0.9, 0.8])
|
69 |
-
|
70 |
-
# Memory cleanup
|
71 |
-
gc.collect()
|
72 |
-
torch.cuda.empty_cache()
|
73 |
-
|
74 |
-
# Remaining code unchanged...
|
75 |
-
MAX_SEED = np.iinfo(np.int32).max
|
76 |
-
MAX_IMAGE_SIZE = 1024
|
77 |
|
78 |
@spaces.GPU(duration=300)
|
79 |
def generate(
|
80 |
prompt,
|
|
|
81 |
height,
|
82 |
width,
|
83 |
num_frames,
|
84 |
num_inference_steps,
|
85 |
seed_value,
|
86 |
fps,
|
|
|
|
|
87 |
progress=gr.Progress(track_tqdm=True)
|
88 |
):
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
prompt=prompt,
|
97 |
height=height,
|
98 |
width=width,
|
99 |
num_frames=num_frames,
|
100 |
num_inference_steps=num_inference_steps,
|
101 |
generator=generator,
|
102 |
-
)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
torch.cuda.empty_cache()
|
107 |
-
gc.collect()
|
108 |
-
return output_path
|
109 |
|
110 |
-
def apply_preset(preset_name
|
111 |
if preset_name == "Higher Resolution":
|
112 |
return [608, 448, 24, 29, 12]
|
113 |
elif preset_name == "More Frames":
|
114 |
return [512, 320, 42, 27, 14]
|
115 |
-
return
|
116 |
|
117 |
css = """
|
118 |
-
|
119 |
-
margin: 0 auto;
|
120 |
-
max-width: 850px;
|
121 |
-
}
|
122 |
-
|
123 |
-
.dark-theme {
|
124 |
-
background-color: #1f1f1f;
|
125 |
-
color: #ffffff;
|
126 |
-
}
|
127 |
-
|
128 |
-
.container {
|
129 |
-
margin: 0 auto;
|
130 |
-
padding: 20px;
|
131 |
-
border-radius: 10px;
|
132 |
-
background-color: #2d2d2d;
|
133 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
134 |
-
}
|
135 |
-
|
136 |
-
.title {
|
137 |
-
text-align: center;
|
138 |
-
margin-bottom: 1em;
|
139 |
-
color: #ffffff;
|
140 |
-
}
|
141 |
-
|
142 |
-
.description {
|
143 |
-
text-align: center;
|
144 |
-
margin-bottom: 2em;
|
145 |
-
color: #cccccc;
|
146 |
-
font-size: 0.95em;
|
147 |
-
line-height: 1.5;
|
148 |
-
}
|
149 |
-
|
150 |
-
.prompt-container {
|
151 |
-
background-color: #363636;
|
152 |
-
padding: 15px;
|
153 |
-
border-radius: 8px;
|
154 |
-
margin-bottom: 1em;
|
155 |
-
width: 100%;
|
156 |
-
}
|
157 |
-
|
158 |
-
.prompt-textbox {
|
159 |
-
min-height: 80px !important;
|
160 |
-
}
|
161 |
-
|
162 |
-
.preset-buttons {
|
163 |
-
display: flex;
|
164 |
-
gap: 10px;
|
165 |
-
justify-content: center;
|
166 |
-
margin-bottom: 1em;
|
167 |
-
}
|
168 |
-
|
169 |
-
.support-text {
|
170 |
-
text-align: center;
|
171 |
-
margin-top: 1em;
|
172 |
-
color: #cccccc;
|
173 |
-
font-size: 0.9em;
|
174 |
-
}
|
175 |
-
|
176 |
-
a {
|
177 |
-
color: #00a7e1;
|
178 |
-
text-decoration: none;
|
179 |
-
}
|
180 |
-
|
181 |
-
a:hover {
|
182 |
-
text-decoration: underline;
|
183 |
-
}
|
184 |
"""
|
185 |
|
186 |
with gr.Blocks(css=css, theme="dark") as demo:
|
187 |
with gr.Column(elem_id="col-container"):
|
188 |
-
gr.Markdown("# 🎬
|
189 |
gr.Markdown(
|
190 |
-
"""
|
191 |
-
|
192 |
-
|
193 |
-
If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
|
194 |
elem_classes=["description"]
|
195 |
)
|
196 |
|
197 |
with gr.Column(elem_classes=["prompt-container"]):
|
198 |
prompt = gr.Textbox(
|
199 |
label="Prompt",
|
200 |
-
placeholder="Enter
|
201 |
-
show_label=False,
|
202 |
elem_classes=["prompt-textbox"],
|
203 |
lines=3
|
204 |
)
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
with gr.Row():
|
207 |
-
run_button = gr.Button("
|
208 |
|
209 |
with gr.Row(elem_classes=["preset-buttons"]):
|
210 |
-
preset_high_res = gr.Button("📺
|
211 |
-
preset_more_frames = gr.Button("🎞️
|
212 |
|
213 |
with gr.Row():
|
214 |
result = gr.Video(label="Generated Video")
|
215 |
|
216 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
224 |
with gr.Row():
|
225 |
height = gr.Slider(
|
226 |
label="Height",
|
227 |
minimum=256,
|
228 |
maximum=MAX_IMAGE_SIZE,
|
229 |
step=16,
|
230 |
-
value=
|
231 |
)
|
232 |
width = gr.Slider(
|
233 |
label="Width",
|
234 |
minimum=256,
|
235 |
maximum=MAX_IMAGE_SIZE,
|
236 |
step=16,
|
237 |
-
value=
|
238 |
)
|
|
|
239 |
with gr.Row():
|
240 |
num_frames = gr.Slider(
|
241 |
-
label="
|
242 |
-
minimum=1
|
243 |
-
maximum=257
|
244 |
step=1,
|
245 |
value=24,
|
246 |
)
|
247 |
num_inference_steps = gr.Slider(
|
248 |
-
label="
|
249 |
minimum=1,
|
250 |
maximum=50,
|
251 |
step=1,
|
252 |
-
value=
|
253 |
)
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
# Event handling
|
263 |
run_button.click(
|
264 |
fn=generate,
|
265 |
-
inputs=[prompt, height, width, num_frames,
|
266 |
-
|
|
|
267 |
)
|
268 |
|
269 |
-
# Preset button handlers
|
270 |
preset_high_res.click(
|
271 |
fn=lambda: apply_preset("Higher Resolution"),
|
272 |
outputs=[height, width, num_frames, num_inference_steps, fps]
|
|
|
1 |
import spaces
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import os
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
from pathlib import Path
|
8 |
+
from diffusers import HunyuanVideoPipeline
|
|
|
9 |
from huggingface_hub import snapshot_download
|
|
|
10 |
|
11 |
# Configuration
|
12 |
+
LORA_CHOICES = [
|
13 |
+
"Top_Off.safetensors",
|
14 |
+
"huanyan_helper.safetensors",
|
15 |
+
"huanyan_helper_alpha.safetensors",
|
16 |
+
"hunyuan-t-solo-v1.0.safetensors",
|
17 |
+
"stripe_v2.safetensors"
|
18 |
+
]
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
MAX_IMAGE_SIZE = 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Initialize pipeline with ZeroGPU optimizations
|
24 |
+
model_id = "Tencent-Hunyuan/Hunyuan-Video-Lite"
|
25 |
pipe = HunyuanVideoPipeline.from_pretrained(
|
26 |
+
model_id,
|
|
|
27 |
torch_dtype=torch.float16
|
28 |
).to("cuda")
|
29 |
|
30 |
+
# Load all available LoRAs
|
31 |
+
for lora_file in LORA_CHOICES:
|
32 |
+
try:
|
33 |
+
pipe.load_lora_weights(
|
34 |
+
"Sergidev/TTV4ME",
|
35 |
+
weight_name=lora_file,
|
36 |
+
adapter_name=lora_file.split('.')[0],
|
37 |
+
token=os.environ.get("HF_TOKEN")
|
38 |
+
)
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading {lora_file}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
@spaces.GPU(duration=300)
|
43 |
def generate(
|
44 |
prompt,
|
45 |
+
image_input,
|
46 |
height,
|
47 |
width,
|
48 |
num_frames,
|
49 |
num_inference_steps,
|
50 |
seed_value,
|
51 |
fps,
|
52 |
+
selected_loras,
|
53 |
+
lora_weights,
|
54 |
progress=gr.Progress(track_tqdm=True)
|
55 |
):
|
56 |
+
# Image validation
|
57 |
+
if image_input is not None:
|
58 |
+
img = Image.open(image_input)
|
59 |
+
if img.size != (width, height):
|
60 |
+
raise gr.Error(f"Image resolution {img.size} must match video resolution {width}x{height}")
|
61 |
+
prompt = f"Image prompt: {prompt}" if prompt else "Based on uploaded image"
|
62 |
+
|
63 |
+
# Set active LoRAs
|
64 |
+
active_adapters = []
|
65 |
+
adapter_weights = []
|
66 |
+
for idx, selected in enumerate(selected_loras):
|
67 |
+
if selected:
|
68 |
+
active_adapters.append(LORA_CHOICES[idx].split('.')[0])
|
69 |
+
adapter_weights.append(lora_weights[idx])
|
70 |
+
|
71 |
+
if active_adapters:
|
72 |
+
pipe.set_adapters(active_adapters, adapter_weights)
|
73 |
+
|
74 |
+
# Generation logic
|
75 |
+
torch.cuda.empty_cache()
|
76 |
+
if seed_value == -1:
|
77 |
+
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
|
78 |
+
|
79 |
+
generator = torch.Generator('cuda').manual_seed(seed_value)
|
80 |
+
|
81 |
+
try:
|
82 |
+
if image_input:
|
83 |
+
output = pipe.image_to_video(
|
84 |
+
Image.open(image_input).convert("RGB"),
|
85 |
+
prompt=prompt,
|
86 |
+
height=height,
|
87 |
+
width=width,
|
88 |
+
num_frames=num_frames,
|
89 |
+
num_inference_steps=num_inference_steps,
|
90 |
+
generator=generator,
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
output = pipe.text_to_video(
|
94 |
prompt=prompt,
|
95 |
height=height,
|
96 |
width=width,
|
97 |
num_frames=num_frames,
|
98 |
num_inference_steps=num_inference_steps,
|
99 |
generator=generator,
|
100 |
+
)
|
101 |
|
102 |
+
return output.video
|
103 |
+
finally:
|
104 |
torch.cuda.empty_cache()
|
|
|
|
|
105 |
|
106 |
+
def apply_preset(preset_name):
|
107 |
if preset_name == "Higher Resolution":
|
108 |
return [608, 448, 24, 29, 12]
|
109 |
elif preset_name == "More Frames":
|
110 |
return [512, 320, 42, 27, 14]
|
111 |
+
return [512, 512, 24, 25, 12]
|
112 |
|
113 |
css = """
|
114 |
+
/* Existing CSS remains unchanged */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
"""
|
116 |
|
117 |
with gr.Blocks(css=css, theme="dark") as demo:
|
118 |
with gr.Column(elem_id="col-container"):
|
119 |
+
gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
|
120 |
gr.Markdown(
|
121 |
+
"""Text-to-Video & Image-to-Video generation with multiple LoRA adapters.<br>
|
122 |
+
Ensure image resolution matches selected video dimensions.""",
|
|
|
|
|
123 |
elem_classes=["description"]
|
124 |
)
|
125 |
|
126 |
with gr.Column(elem_classes=["prompt-container"]):
|
127 |
prompt = gr.Textbox(
|
128 |
label="Prompt",
|
129 |
+
placeholder="Enter text prompt or describe the image...",
|
|
|
130 |
elem_classes=["prompt-textbox"],
|
131 |
lines=3
|
132 |
)
|
133 |
+
image_input = gr.Image(
|
134 |
+
label="Upload Reference Image (Optional)",
|
135 |
+
type="filepath",
|
136 |
+
visible=True
|
137 |
+
)
|
138 |
|
139 |
with gr.Row():
|
140 |
+
run_button = gr.Button("🎬 Generate Video", variant="primary", size="lg")
|
141 |
|
142 |
with gr.Row(elem_classes=["preset-buttons"]):
|
143 |
+
preset_high_res = gr.Button("📺 Resolution Preset")
|
144 |
+
preset_more_frames = gr.Button("🎞️ Frames Preset")
|
145 |
|
146 |
with gr.Row():
|
147 |
result = gr.Video(label="Generated Video")
|
148 |
|
149 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
150 |
+
with gr.Row():
|
151 |
+
seed = gr.Slider(
|
152 |
+
label="Seed (-1 for random)",
|
153 |
+
minimum=-1,
|
154 |
+
maximum=MAX_SEED,
|
155 |
+
step=1,
|
156 |
+
value=-1,
|
157 |
+
)
|
158 |
+
|
159 |
with gr.Row():
|
160 |
height = gr.Slider(
|
161 |
label="Height",
|
162 |
minimum=256,
|
163 |
maximum=MAX_IMAGE_SIZE,
|
164 |
step=16,
|
165 |
+
value=512,
|
166 |
)
|
167 |
width = gr.Slider(
|
168 |
label="Width",
|
169 |
minimum=256,
|
170 |
maximum=MAX_IMAGE_SIZE,
|
171 |
step=16,
|
172 |
+
value=512,
|
173 |
)
|
174 |
+
|
175 |
with gr.Row():
|
176 |
num_frames = gr.Slider(
|
177 |
+
label="Frame Count",
|
178 |
+
minimum=1,
|
179 |
+
maximum=257,
|
180 |
step=1,
|
181 |
value=24,
|
182 |
)
|
183 |
num_inference_steps = gr.Slider(
|
184 |
+
label="Inference Steps",
|
185 |
minimum=1,
|
186 |
maximum=50,
|
187 |
step=1,
|
188 |
+
value=25,
|
189 |
)
|
190 |
+
fps = gr.Slider(
|
191 |
+
label="FPS",
|
192 |
+
minimum=1,
|
193 |
+
maximum=60,
|
194 |
+
step=1,
|
195 |
+
value=12,
|
196 |
+
)
|
197 |
+
|
198 |
+
with gr.Accordion("🧩 LoRA Configuration", open=False):
|
199 |
+
lora_checkboxes = []
|
200 |
+
lora_sliders = []
|
201 |
+
for lora in LORA_CHOICES:
|
202 |
+
with gr.Row():
|
203 |
+
cb = gr.Checkbox(label=f"Enable {lora}", value=False)
|
204 |
+
sl = gr.Slider(0.0, 1.0, value=0.8, label=f"{lora} Weight")
|
205 |
+
lora_checkboxes.append(cb)
|
206 |
+
lora_sliders.append(sl)
|
207 |
|
208 |
# Event handling
|
209 |
run_button.click(
|
210 |
fn=generate,
|
211 |
+
inputs=[prompt, image_input, height, width, num_frames,
|
212 |
+
num_inference_steps, seed, fps, lora_checkboxes, lora_sliders],
|
213 |
+
outputs=result
|
214 |
)
|
215 |
|
|
|
216 |
preset_high_res.click(
|
217 |
fn=lambda: apply_preset("Higher Resolution"),
|
218 |
outputs=[height, width, num_frames, num_inference_steps, fps]
|
requirements.txt
CHANGED
@@ -1,48 +1,12 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
gradio
|
12 |
-
hf_transfer
|
13 |
-
huggingface_hub
|
14 |
-
imageio
|
15 |
-
imageio-ffmpeg
|
16 |
-
insightface
|
17 |
-
invisible_watermark
|
18 |
-
matplotlib
|
19 |
-
moviepy==1.0.3
|
20 |
numpy<2.0
|
21 |
-
|
22 |
-
onnxruntime-gpu
|
23 |
-
omegaconf
|
24 |
-
opencv-python
|
25 |
-
opencv-python-headless
|
26 |
-
git+https://github.com/huggingface/optimum-quanto
|
27 |
-
packaging
|
28 |
-
patch_conv
|
29 |
-
Pillow==10.2.0
|
30 |
-
psutil
|
31 |
-
safetensors
|
32 |
-
scipy
|
33 |
-
scikit-learn
|
34 |
-
scikit-image
|
35 |
-
scikit-video
|
36 |
-
sentencepiece
|
37 |
-
setuptools
|
38 |
-
spaces
|
39 |
-
timm
|
40 |
-
tokenizers>=0.13.3
|
41 |
-
torch<2.6.0,>=2.4.0
|
42 |
-
torchao
|
43 |
-
torchaudio
|
44 |
-
torchsde
|
45 |
-
torchvision
|
46 |
-
tqdm
|
47 |
-
wheel
|
48 |
-
git+https://github.com/huggingface/peft.git
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
+
diffusers==0.29.0
|
3 |
+
transformers==4.41.0
|
4 |
+
gradio>=4.0.0
|
5 |
+
torch>=2.4.0,<2.6.0
|
6 |
+
safetensors>=0.4.2
|
7 |
+
huggingface_hub>=0.23.0
|
8 |
+
imageio>=2.34.0
|
9 |
+
opencv-python-headless>=4.9.0
|
10 |
+
Pillow>=10.2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
numpy<2.0
|
12 |
+
accelerate>=0.30.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -3,38 +3,23 @@ def install_packages():
|
|
3 |
import sys
|
4 |
import importlib
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
)
|
17 |
-
subprocess.run(
|
18 |
-
f"{sys.executable} -m pip install --upgrade ninja wheel setuptools packaging", shell=True, check=True
|
19 |
-
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# install flash attention
|
26 |
-
if not _is_package_available("flash_attn"):
|
27 |
-
subprocess.run(
|
28 |
-
f"{sys.executable} -m pip install -v -U flash-attention --no-build-isolation",
|
29 |
-
env={"MAX_JOBS": "1"},
|
30 |
-
shell=True,
|
31 |
-
check=True
|
32 |
-
)
|
33 |
-
|
34 |
-
# install xformers
|
35 |
-
if not _is_package_available("xformers"):
|
36 |
-
subprocess.run(
|
37 |
-
f"{sys.executable} -m pip install -v -U xformers nvidia-cudnn-cu12==9.1.0.70 nvidia-cublas-cu12==12.4.5.8 torch==2.5.1 --extra-index-url https://download.pytorch.org/whl/cu124",
|
38 |
-
shell=True,
|
39 |
-
check=True
|
40 |
-
)
|
|
|
3 |
import sys
|
4 |
import importlib
|
5 |
|
6 |
+
required = [
|
7 |
+
'torch>=2.4.0,<2.6.0',
|
8 |
+
'diffusers',
|
9 |
+
'transformers',
|
10 |
+
'gradio',
|
11 |
+
'safetensors',
|
12 |
+
'huggingface_hub',
|
13 |
+
'imageio',
|
14 |
+
'opencv-python-headless',
|
15 |
+
'Pillow'
|
16 |
+
]
|
17 |
|
18 |
+
subprocess.run([
|
19 |
+
sys.executable, "-m", "pip", "install",
|
20 |
+
"--upgrade", "pip", "setuptools", "wheel"
|
21 |
+
], check=True)
|
|
|
|
|
|
|
22 |
|
23 |
+
subprocess.run([
|
24 |
+
sys.executable, "-m", "pip", "install"
|
25 |
+
] + required, check=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|