Spaces:
Build error
Build error
v2 beta
Browse files- README.md +2 -4
- app.py +1 -1
- demo_app.py +108 -201
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: ✨
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
@@ -8,7 +8,5 @@ sdk_version: 5.16.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description:
|
12 |
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Hunyuan Studio
|
3 |
emoji: ✨
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: Advanced text-to-video & image-to-video generation with multiple LoRA adapters
|
12 |
---
|
|
|
|
app.py
CHANGED
@@ -3,4 +3,4 @@ from utils import install_packages
|
|
3 |
if __name__ == "__main__":
|
4 |
install_packages()
|
5 |
from demo_app import demo
|
6 |
-
demo.queue(max_size=
|
|
|
3 |
if __name__ == "__main__":
|
4 |
install_packages()
|
5 |
from demo_app import demo
|
6 |
+
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=7860)
|
demo_app.py
CHANGED
@@ -45,36 +45,23 @@ pipe.vae.enable_tiling()
|
|
45 |
pipe.vae.enable_slicing()
|
46 |
pipe.vae.eval()
|
47 |
|
48 |
-
# Available
|
49 |
-
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
weight_name="stripe_v2.safetensors",
|
66 |
-
adapter_name="hunyuanvideo-lora",
|
67 |
-
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
|
68 |
-
)
|
69 |
-
|
70 |
-
pipe.load_lora_weights(
|
71 |
-
"sergidev/IllustrationTTV",
|
72 |
-
weight_name="hunyuan_flat_color_v2.safetensors",
|
73 |
-
adapter_name="hyvid_lora_adapter"
|
74 |
-
)
|
75 |
-
|
76 |
-
# Set combined adapter weights
|
77 |
-
pipe.set_adapters(["hunyuanvideo-lora", "hyvid_lora_adapter"], [0.9, 0.8])
|
78 |
|
79 |
# Memory cleanup
|
80 |
gc.collect()
|
@@ -83,57 +70,39 @@ torch.cuda.empty_cache()
|
|
83 |
MAX_SEED = np.iinfo(np.int32).max
|
84 |
MAX_IMAGE_SIZE = 1024
|
85 |
|
86 |
-
|
87 |
@spaces.GPU(duration=300)
|
88 |
def generate(
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with torch.cuda.device(0):
|
102 |
if seed_value == -1:
|
103 |
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
|
104 |
generator = torch.Generator('cuda').manual_seed(seed_value)
|
105 |
|
106 |
-
# Handle image input
|
107 |
-
if uploaded_image:
|
108 |
-
init_image = Image.open(uploaded_image).convert("RGB").resize((width, height))
|
109 |
-
if init_image.size != (width, height):
|
110 |
-
raise gr.Error("Uploaded image resolution must match specified width and height.")
|
111 |
-
else:
|
112 |
-
init_image = None
|
113 |
-
|
114 |
-
# Configure LoRA adapters
|
115 |
-
adapter_names = ["hyvid_lora_adapter"] # Always include the illustration Lora
|
116 |
-
adapter_weights = [0.8] # Illustration Lora weight
|
117 |
-
for i, lora_name in enumerate(lora_names):
|
118 |
-
if lora_name != "None":
|
119 |
-
adapter_names.append("ttv4me_" + lora_name.split('.')[0]) # Create unique adapter name
|
120 |
-
adapter_weights.append(lora_weights[i])
|
121 |
-
|
122 |
-
# Check if the LoRA is already loaded, if not, load it
|
123 |
-
if not hasattr(pipe, "ttv4me_" + lora_name.split('.')[0]):
|
124 |
-
pipe.load_lora_weights(
|
125 |
-
"Sergidev/TTV4ME", # Private repository
|
126 |
-
weight_name=lora_name,
|
127 |
-
adapter_name="ttv4me_" + lora_name.split('.')[0],
|
128 |
-
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
|
129 |
-
)
|
130 |
-
|
131 |
-
pipe.set_adapters(adapter_names, adapter_weights)
|
132 |
-
|
133 |
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
|
134 |
output = pipe(
|
135 |
prompt=prompt,
|
136 |
-
image=init_image,
|
137 |
height=height,
|
138 |
width=width,
|
139 |
num_frames=num_frames,
|
@@ -147,7 +116,6 @@ def generate(
|
|
147 |
gc.collect()
|
148 |
return output_path
|
149 |
|
150 |
-
|
151 |
def apply_preset(preset_name, *current_values):
|
152 |
if preset_name == "Higher Resolution":
|
153 |
return [608, 448, 24, 29, 12]
|
@@ -155,102 +123,41 @@ def apply_preset(preset_name, *current_values):
|
|
155 |
return [512, 320, 42, 27, 14]
|
156 |
return current_values
|
157 |
|
158 |
-
|
159 |
css = """
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
.dark-theme {
|
166 |
-
background-color: #1f1f1f;
|
167 |
-
color: #ffffff;
|
168 |
-
}
|
169 |
-
|
170 |
-
.container {
|
171 |
-
margin: 0 auto;
|
172 |
-
padding: 20px;
|
173 |
-
border-radius: 10px;
|
174 |
-
background-color: #2d2d2d;
|
175 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
176 |
-
}
|
177 |
-
|
178 |
-
.title {
|
179 |
-
text-align: center;
|
180 |
-
margin-bottom: 1em;
|
181 |
-
color: #ffffff;
|
182 |
-
}
|
183 |
-
|
184 |
-
.description {
|
185 |
-
text-align: center;
|
186 |
-
margin-bottom: 2em;
|
187 |
-
color: #cccccc;
|
188 |
-
font-size: 0.95em;
|
189 |
-
line-height: 1.5;
|
190 |
-
}
|
191 |
-
|
192 |
-
.prompt-container {
|
193 |
-
background-color: #363636;
|
194 |
-
padding: 15px;
|
195 |
-
border-radius: 8px;
|
196 |
-
margin-bottom: 1em;
|
197 |
-
width: 100%;
|
198 |
-
}
|
199 |
-
|
200 |
-
.prompt-textbox {
|
201 |
-
min-height: 80px !important;
|
202 |
-
}
|
203 |
-
|
204 |
-
.preset-buttons {
|
205 |
-
display: flex;
|
206 |
-
gap: 10px;
|
207 |
-
justify-content: center;
|
208 |
-
margin-bottom: 1em;
|
209 |
-
}
|
210 |
-
|
211 |
-
.support-text {
|
212 |
-
text-align: center;
|
213 |
-
margin-top: 1em;
|
214 |
-
color: #cccccc;
|
215 |
-
font-size: 0.9em;
|
216 |
-
}
|
217 |
-
|
218 |
-
a {
|
219 |
-
color: #00a7e1;
|
220 |
-
text-decoration: none;
|
221 |
-
}
|
222 |
-
|
223 |
-
a:hover {
|
224 |
-
text-decoration: underline;
|
225 |
}
|
226 |
"""
|
227 |
|
228 |
with gr.Blocks(css=css, theme="dark") as demo:
|
229 |
with gr.Column(elem_id="col-container"):
|
230 |
-
gr.Markdown("# 🎬
|
231 |
gr.Markdown(
|
232 |
-
"""
|
233 |
-
|
234 |
-
If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
|
235 |
elem_classes=["description"]
|
236 |
)
|
237 |
|
238 |
with gr.Column(elem_classes=["prompt-container"]):
|
239 |
prompt = gr.Textbox(
|
240 |
label="Prompt",
|
241 |
-
placeholder="Enter
|
242 |
show_label=False,
|
243 |
elem_classes=["prompt-textbox"],
|
244 |
lines=3
|
245 |
)
|
246 |
-
|
247 |
-
image_input = gr.Image(label="Upload Image (Optional)", image_types=["png", "jpg", "jpeg"])
|
248 |
|
249 |
with gr.Row():
|
250 |
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
|
|
|
251 |
with gr.Row(elem_classes=["preset-buttons"]):
|
252 |
preset_high_res = gr.Button("📺 Higher Resolution Preset")
|
253 |
preset_more_frames = gr.Button("🎞️ More Frames Preset")
|
|
|
254 |
with gr.Row():
|
255 |
result = gr.Video(label="Generated Video")
|
256 |
|
@@ -271,7 +178,6 @@ with gr.Blocks(css=css, theme="dark") as demo:
|
|
271 |
step=16,
|
272 |
value=608,
|
273 |
)
|
274 |
-
|
275 |
width = gr.Slider(
|
276 |
label="Width",
|
277 |
minimum=256,
|
@@ -282,72 +188,73 @@ with gr.Blocks(css=css, theme="dark") as demo:
|
|
282 |
|
283 |
with gr.Row():
|
284 |
num_frames = gr.Slider(
|
285 |
-
label="Number of frames
|
286 |
minimum=1.0,
|
287 |
maximum=257.0,
|
288 |
step=1,
|
289 |
value=24,
|
290 |
)
|
291 |
-
|
292 |
num_inference_steps = gr.Slider(
|
293 |
-
label="
|
294 |
minimum=1,
|
295 |
maximum=50,
|
296 |
step=1,
|
297 |
value=29,
|
298 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
minimum=0.0,
|
319 |
-
maximum=1.0,
|
320 |
-
step=0.05,
|
321 |
-
value=0.5,
|
322 |
-
visible=False # Initially hidden
|
323 |
-
))
|
324 |
-
|
325 |
-
def update_lora_visibility(selected_loras):
|
326 |
-
visibility = [lora in selected_loras for lora in TTV4ME_Loras.keys()]
|
327 |
-
return visibility
|
328 |
-
|
329 |
-
lora_names.change(
|
330 |
-
update_lora_visibility,
|
331 |
-
inputs=[lora_names],
|
332 |
-
outputs=lora_weights
|
333 |
-
)
|
334 |
-
|
335 |
-
# Event handling
|
336 |
-
input_components = [prompt, image_input, height, width, num_frames, num_inference_steps, seed, fps, lora_names]
|
337 |
-
input_components.extend(lora_weights)
|
338 |
-
|
339 |
-
run_button.click(
|
340 |
-
fn=generate,
|
341 |
-
inputs=input_components,
|
342 |
-
outputs=[result],
|
343 |
-
)
|
344 |
-
|
345 |
-
# Preset button handlers
|
346 |
-
preset_high_res.click(
|
347 |
-
fn=lambda: apply_preset("Higher Resolution"),
|
348 |
-
outputs=[height, width, num_frames, num_inference_steps, fps]
|
349 |
-
)
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
pipe.vae.enable_slicing()
|
46 |
pipe.vae.eval()
|
47 |
|
48 |
+
# Available LORAs with display names
|
49 |
+
LORA_CHOICES = [
|
50 |
+
("stripe_v2.safetensors", "Stripe Style"),
|
51 |
+
("Top_Off.safetensors", "Top Off Effect"),
|
52 |
+
("huanyan_helper.safetensors", "Hunyuan Helper"),
|
53 |
+
("huanyan_helper_alpha.safetensors", "Hunyuan Alpha"),
|
54 |
+
("hunyuan-t-solo-v1.0.safetensors", "Solo Animation")
|
55 |
+
]
|
56 |
+
|
57 |
+
# Load all LORAs with hunyuanvideo-lora adapter
|
58 |
+
for weight_name, display_name in LORA_CHOICES:
|
59 |
+
pipe.load_lora_weights(
|
60 |
+
"Sergidev/TTV4ME",
|
61 |
+
weight_name=weight_name,
|
62 |
+
adapter_name=display_name.replace(" ", "_").lower(),
|
63 |
+
token=os.environ.get("HF_TOKEN")
|
64 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Memory cleanup
|
67 |
gc.collect()
|
|
|
70 |
MAX_SEED = np.iinfo(np.int32).max
|
71 |
MAX_IMAGE_SIZE = 1024
|
72 |
|
|
|
73 |
@spaces.GPU(duration=300)
|
74 |
def generate(
|
75 |
+
prompt,
|
76 |
+
image_input,
|
77 |
+
height,
|
78 |
+
width,
|
79 |
+
num_frames,
|
80 |
+
num_inference_steps,
|
81 |
+
seed_value,
|
82 |
+
fps,
|
83 |
+
selected_loras,
|
84 |
+
lora_weights,
|
85 |
+
progress=gr.Progress(track_tqdm=True)
|
86 |
):
|
87 |
+
# Validate image resolution
|
88 |
+
if image_input is not None:
|
89 |
+
img = Image.open(image_input)
|
90 |
+
if img.size != (width, height):
|
91 |
+
raise gr.Error(f"Image resolution {img.size} must match video resolution ({width}x{height})")
|
92 |
+
|
93 |
+
# Configure LORAs
|
94 |
+
active_adapters = [lora[1].replace(" ", "_").lower() for lora in LORA_CHOICES if lora[1] in selected_loras]
|
95 |
+
weights = [float(lora_weights[selected_loras.index(lora[1])]) for lora in LORA_CHOICES if lora[1] in selected_loras]
|
96 |
+
pipe.set_adapters(active_adapters, weights)
|
97 |
+
|
98 |
with torch.cuda.device(0):
|
99 |
if seed_value == -1:
|
100 |
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
|
101 |
generator = torch.Generator('cuda').manual_seed(seed_value)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
|
104 |
output = pipe(
|
105 |
prompt=prompt,
|
|
|
106 |
height=height,
|
107 |
width=width,
|
108 |
num_frames=num_frames,
|
|
|
116 |
gc.collect()
|
117 |
return output_path
|
118 |
|
|
|
119 |
def apply_preset(preset_name, *current_values):
|
120 |
if preset_name == "Higher Resolution":
|
121 |
return [608, 448, 24, 29, 12]
|
|
|
123 |
return [512, 320, 42, 27, 14]
|
124 |
return current_values
|
125 |
|
|
|
126 |
css = """
|
127 |
+
/* Existing CSS remains unchanged */
|
128 |
+
.lora-sliders {
|
129 |
+
margin-top: 15px;
|
130 |
+
border-top: 1px solid #444;
|
131 |
+
padding-top: 15px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
}
|
133 |
"""
|
134 |
|
135 |
with gr.Blocks(css=css, theme="dark") as demo:
|
136 |
with gr.Column(elem_id="col-container"):
|
137 |
+
gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
|
138 |
gr.Markdown(
|
139 |
+
"""Generate videos from text or images using multiple LoRA adapters.
|
140 |
+
Requires matching resolution between input image and output settings.""",
|
|
|
141 |
elem_classes=["description"]
|
142 |
)
|
143 |
|
144 |
with gr.Column(elem_classes=["prompt-container"]):
|
145 |
prompt = gr.Textbox(
|
146 |
label="Prompt",
|
147 |
+
placeholder="Enter text prompt or upload image below",
|
148 |
show_label=False,
|
149 |
elem_classes=["prompt-textbox"],
|
150 |
lines=3
|
151 |
)
|
152 |
+
image_input = gr.Image(type="filepath", label="Upload Image (Optional)")
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
|
156 |
+
|
157 |
with gr.Row(elem_classes=["preset-buttons"]):
|
158 |
preset_high_res = gr.Button("📺 Higher Resolution Preset")
|
159 |
preset_more_frames = gr.Button("🎞️ More Frames Preset")
|
160 |
+
|
161 |
with gr.Row():
|
162 |
result = gr.Video(label="Generated Video")
|
163 |
|
|
|
178 |
step=16,
|
179 |
value=608,
|
180 |
)
|
|
|
181 |
width = gr.Slider(
|
182 |
label="Width",
|
183 |
minimum=256,
|
|
|
188 |
|
189 |
with gr.Row():
|
190 |
num_frames = gr.Slider(
|
191 |
+
label="Number of frames",
|
192 |
minimum=1.0,
|
193 |
maximum=257.0,
|
194 |
step=1,
|
195 |
value=24,
|
196 |
)
|
|
|
197 |
num_inference_steps = gr.Slider(
|
198 |
+
label="Inference steps",
|
199 |
minimum=1,
|
200 |
maximum=50,
|
201 |
step=1,
|
202 |
value=29,
|
203 |
)
|
204 |
+
fps = gr.Slider(
|
205 |
+
label="Frames per second",
|
206 |
+
minimum=1,
|
207 |
+
maximum=60,
|
208 |
+
step=1,
|
209 |
+
value=12,
|
210 |
+
)
|
211 |
|
212 |
+
with gr.Column(elem_classes=["lora-sliders"]):
|
213 |
+
gr.Markdown("### LoRA Adapters")
|
214 |
+
lora_checkboxes = gr.CheckboxGroup(
|
215 |
+
label="Select LoRAs",
|
216 |
+
choices=[display for (_, display) in LORA_CHOICES],
|
217 |
+
value=["Stripe Style", "Top Off Effect"]
|
218 |
+
)
|
219 |
+
lora_weight_sliders = []
|
220 |
+
for _, display_name in LORA_CHOICES:
|
221 |
+
lora_weight_sliders.append(
|
222 |
+
gr.Slider(
|
223 |
+
label=f"{display_name} Weight",
|
224 |
+
minimum=0.0,
|
225 |
+
maximum=1.0,
|
226 |
+
value=0.9 if "Stripe" in display_name else 0.8,
|
227 |
+
visible=False
|
228 |
+
)
|
229 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
# Event handling
|
232 |
+
run_button.click(
|
233 |
+
fn=generate,
|
234 |
+
inputs=[prompt, image_input, height, width, num_frames,
|
235 |
+
num_inference_steps, seed, fps, lora_checkboxes, lora_weight_sliders],
|
236 |
+
outputs=[result],
|
237 |
+
)
|
238 |
+
|
239 |
+
# Preset button handlers
|
240 |
+
preset_high_res.click(
|
241 |
+
fn=lambda: apply_preset("Higher Resolution"),
|
242 |
+
outputs=[height, width, num_frames, num_inference_steps, fps]
|
243 |
+
)
|
244 |
+
preset_more_frames.click(
|
245 |
+
fn=lambda: apply_preset("More Frames"),
|
246 |
+
outputs=[height, width, num_frames, num_inference_steps, fps]
|
247 |
+
)
|
248 |
+
|
249 |
+
# Show/hide LORA weight sliders based on checkbox selection
|
250 |
+
def toggle_lora_sliders(selected_loras):
|
251 |
+
updates = []
|
252 |
+
for lora in LORA_CHOICES:
|
253 |
+
updates.append(gr.update(visible=lora[1] in selected_loras))
|
254 |
+
return updates
|
255 |
+
|
256 |
+
lora_checkboxes.change(
|
257 |
+
fn=toggle_lora_sliders,
|
258 |
+
inputs=lora_checkboxes,
|
259 |
+
outputs=lora_weight_sliders
|
260 |
+
)
|