File size: 9,635 Bytes
827d113
 
02a5208
827d113
 
 
 
 
 
 
 
 
 
 
 
 
bc0df63
827d113
bc0df63
220ffe7
bc0df63
 
 
 
 
7117c2e
bc0df63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c470655
bc0df63
 
827d113
bc0df63
220ffe7
bc0df63
 
 
 
 
 
827d113
bc0df63
02a5208
bc0df63
 
 
 
05e7c02
bc0df63
 
 
 
 
 
 
 
 
 
 
 
 
 
c470655
 
bc0df63
 
c470655
 
 
 
 
 
 
 
 
 
 
 
220ffe7
c470655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e7c02
c470655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a5208
 
 
 
 
 
 
 
bc0df63
02a5208
c470655
 
02a5208
c470655
 
 
 
 
 
 
02a5208
c470655
 
 
 
 
 
 
 
 
 
 
 
 
827d113
23daa6d
c470655
 
 
 
 
 
 
 
 
 
 
 
 
 
220ffe7
c470655
 
 
 
 
 
 
 
 
02a5208
c470655
 
 
 
 
 
 
 
 
 
 
02a5208
c470655
d761765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0df63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import gc
import random
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline

# ... (keep all the imports and initial setup)

# ... (keep all the functions like load_pipeline, parse_json_parameters, apply_json_parameters, generate, get_random_prompt)

if torch.cuda.is_available():
    pipe = load_pipeline(MODEL)
    logger.info("Loaded on Device!")
else:
    pipe = None

# Define the JavaScript code as a string
js_code = """
<script>
document.addEventListener('DOMContentLoaded', (event) => {
  const historyDropdown = document.getElementById('history-dropdown');
  const resultGallery = document.querySelector('.gallery');

  if (historyDropdown && resultGallery) {
    const observer = new MutationObserver((mutations) => {
      mutations.forEach((mutation) => {
        if (mutation.type === 'childList' && mutation.addedNodes.length > 0) {
          const newImage = mutation.addedNodes[0];
          if (newImage.tagName === 'IMG') {
            updateHistory(newImage.src);
          }
        }
      });
    });

    observer.observe(resultGallery, { childList: true });

    function updateHistory(imageSrc) {
      const prompt = document.querySelector('#prompt textarea').value;
      const option = document.createElement('option');
      option.value = prompt;
      option.textContent = prompt;
      option.setAttribute('data-image', imageSrc);

      historyDropdown.insertBefore(option, historyDropdown.firstChild);

      if (historyDropdown.children.length > 10) {
        historyDropdown.removeChild(historyDropdown.lastChild);
      }
    }

    historyDropdown.addEventListener('change', (event) => {
      const selectedOption = event.target.selectedOptions[0];
      const imageSrc = selectedOption.getAttribute('data-image');
      if (imageSrc) {
        const img = document.createElement('img');
        img.src = imageSrc;
        resultGallery.innerHTML = '';
        resultGallery.appendChild(img);
      }
    });
  }
});
</script>
"""

with gr.Blocks(css="style.css") as demo:
    gr.HTML(js_code)  # Add the JavaScript code to the interface
    
    title = gr.HTML(
        f"""<h1><span>{DESCRIPTION}</span></h1>""",
        elem_id="title",
    )
    gr.Markdown(
        f"""Gradio demo for [Pony Diffusion V6](https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
        elem_id="subtitle",
    )
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=5,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button(
                "Generate", 
                variant="primary", 
                scale=0
            )
        result = gr.Gallery(
            label="Result", 
            columns=1, 
            preview=True, 
            show_label=False
        )
    with gr.Accordion(label="Advanced Settings", open=False):
        negative_prompt = gr.Text(
            label="Negative Prompt",
            max_lines=5,
            placeholder="Enter a negative prompt",
            value=""
        )
        aspect_ratio_selector = gr.Radio(
            label="Aspect Ratio",
            choices=config.aspect_ratios,
            value="1024 x 1024",
            container=True,
        )
        with gr.Group(visible=False) as custom_resolution:
            with gr.Row():
                custom_width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
                custom_height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
        use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
        with gr.Row() as upscaler_row:
            upscaler_strength = gr.Slider(
                label="Strength",
                minimum=0,
                maximum=1,
                step=0.05,
                value=0.55,
                visible=False,
            )
            upscale_by = gr.Slider(
                label="Upscale by",
                minimum=1,
                maximum=1.5,
                step=0.1,
                value=1.5,
                visible=False,
            )

        sampler = gr.Dropdown(
            label="Sampler",
            choices=config.sampler_list,
            interactive=True,
            value="DPM++ 2M SDE Karras",
        )
        with gr.Row():
            seed = gr.Slider(
                label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Group():
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1,
                    maximum=12,
                    step=0.1,
                    value=7.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
    with gr.Accordion(label="JSON Parameters", open=False):
        json_input = gr.TextArea(label="Input JSON parameters")
        apply_json_button = gr.Button("Apply JSON Parameters")

    with gr.Row():
        clear_button = gr.Button("Clear All")
        random_prompt_button = gr.Button("Random Prompt")

    history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True, elem_id="history-dropdown")
    
    with gr.Accordion(label="Generation Parameters", open=False):
        gr_metadata = gr.JSON(label="Metadata", show_label=False)
    
    gr.Examples(
        examples=config.examples,
        inputs=prompt,
        outputs=[result, gr_metadata],
        fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
        cache_examples=CACHE_EXAMPLES,
    )
    
    use_upscaler.change(
        fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
        inputs=use_upscaler,
        outputs=[upscaler_strength, upscale_by],
        queue=False,
        api_name=False,
    )
    aspect_ratio_selector.change(
        fn=lambda x: gr.update(visible=x == "Custom"),
        inputs=aspect_ratio_selector,
        outputs=custom_resolution,
        queue=False,
        api_name=False,
    )

    inputs = [
        prompt,
        negative_prompt,
        seed,
        custom_width,
        custom_height,
        guidance_scale,
        num_inference_steps,
        sampler,
        aspect_ratio_selector,
        use_upscaler,
        upscaler_strength,
        upscale_by,
    ]

    prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],
        api_name="run",
    )
    negative_prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],
        api_name=False,
    )
    run_button.click(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],
        api_name=False,
    )

    apply_json_button.click(
        fn=apply_json_parameters,
        inputs=json_input,
        outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
                 guidance_scale, num_inference_steps, sampler,
                 aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
    )

    clear_button.click(
        fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0),
                    gr.update(value=1024), gr.update(value=1024),
                    gr.update(value=7.0), gr.update(value=30),
                    gr.update(value="DPM++ 2M SDE Karras"),
                    gr.update(value="1024 x 1024"), gr.update(value=False),
                    gr.update(value=0.55), gr.update(value=1.5)),
        inputs=[],
        outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
                 guidance_scale, num_inference_steps, sampler,
                 aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
    )

    random_prompt_button.click(
        fn=get_random_prompt,
        inputs=[],
        outputs=prompt
    )

    history_dropdown.change(
        fn=lambda x: gr.update(value=x),
        inputs=history_dropdown,
        outputs=prompt
    )

demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)