Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -27,7 +27,6 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
| 27 | 
             
            USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
         | 
| 28 | 
             
            ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
         | 
| 29 | 
             
            OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
         | 
| 30 | 
            -
            THUMBNAIL_SIZE = (128, 128)  # Size for thumbnails
         | 
| 31 |  | 
| 32 | 
             
            MODEL = os.getenv(
         | 
| 33 | 
             
                "MODEL",
         | 
| @@ -39,11 +38,33 @@ torch.backends.cudnn.benchmark = False | |
| 39 |  | 
| 40 | 
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         | 
| 41 |  | 
| 42 | 
            -
            #  | 
| 43 | 
            -
             | 
| 44 |  | 
| 45 | 
             
            def load_pipeline(model_name):
         | 
| 46 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 47 |  | 
| 48 | 
             
            @spaces.GPU
         | 
| 49 | 
             
            def generate(
         | 
| @@ -61,29 +82,95 @@ def generate( | |
| 61 | 
             
                upscale_by: float = 1.5,
         | 
| 62 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 63 | 
             
            ) -> Image:
         | 
| 64 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 65 |  | 
| 66 | 
             
                try:
         | 
| 67 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 68 |  | 
| 69 | 
            -
                    if images:
         | 
| 70 | 
            -
                         | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 76 | 
             
                            "prompt": prompt,
         | 
| 77 | 
            -
                            "thumbnail": thumbnail,
         | 
| 78 | 
             
                            "metadata": metadata
         | 
| 79 | 
             
                        })
         | 
| 80 |  | 
| 81 | 
            -
             | 
| 82 | 
            -
                            for image in images:
         | 
| 83 | 
            -
                                filepath = utils.save_image(image, metadata, OUTPUT_DIR)
         | 
| 84 | 
            -
                                logger.info(f"Image saved as {filepath} with metadata")
         | 
| 85 | 
            -
             | 
| 86 | 
            -
                    return images, metadata, update_history()
         | 
| 87 | 
             
                except Exception as e:
         | 
| 88 | 
             
                    logger.exception(f"An error occurred: {e}")
         | 
| 89 | 
             
                    raise
         | 
| @@ -93,19 +180,6 @@ def generate( | |
| 93 | 
             
                    pipe.scheduler = backup_scheduler
         | 
| 94 | 
             
                    utils.free_memory()
         | 
| 95 |  | 
| 96 | 
            -
            def update_history():
         | 
| 97 | 
            -
                history_html = "<div style='display: flex; flex-wrap: wrap;'>"
         | 
| 98 | 
            -
                for item in reversed(generation_history[-10:]):  # Show last 10 entries
         | 
| 99 | 
            -
                    thumbnail_path = f"data:image/png;base64,{utils.image_to_base64(item['thumbnail'])}"
         | 
| 100 | 
            -
                    history_html += f"""
         | 
| 101 | 
            -
                    <div style='margin: 5px; text-align: center;'>
         | 
| 102 | 
            -
                        <img src='{thumbnail_path}' style='width: 100px; height: 100px; object-fit: cover;'>
         | 
| 103 | 
            -
                        <p style='font-size: 12px; margin: 5px 0;'>{item['prompt'][:50]}...</p>
         | 
| 104 | 
            -
                    </div>
         | 
| 105 | 
            -
                    """
         | 
| 106 | 
            -
                history_html += "</div>"
         | 
| 107 | 
            -
                return history_html
         | 
| 108 | 
            -
             | 
| 109 | 
             
            if torch.cuda.is_available():
         | 
| 110 | 
             
                pipe = load_pipeline(MODEL)
         | 
| 111 | 
             
                logger.info("Loaded on Device!")
         | 
| @@ -128,43 +202,133 @@ with gr.Blocks(css="style.css") as demo: | |
| 128 | 
             
                )
         | 
| 129 | 
             
                with gr.Group():
         | 
| 130 | 
             
                    with gr.Row():
         | 
| 131 | 
            -
                         | 
| 132 | 
            -
                             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
                             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 152 |  | 
| 153 | 
             
                with gr.Accordion(label="Advanced Settings", open=False):
         | 
| 154 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 155 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 156 | 
             
                with gr.Accordion(label="Generation Parameters", open=False):
         | 
| 157 | 
             
                    gr_metadata = gr.JSON(label="Metadata", show_label=False)
         | 
| 158 | 
            -
             | 
| 159 | 
             
                gr.Examples(
         | 
| 160 | 
             
                    examples=config.examples,
         | 
| 161 | 
             
                    inputs=prompt,
         | 
| 162 | 
            -
                    outputs=[result, gr_metadata,  | 
| 163 | 
             
                    fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
         | 
| 164 | 
             
                    cache_examples=CACHE_EXAMPLES,
         | 
| 165 | 
             
                )
         | 
| 166 | 
            -
             | 
| 167 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 168 |  | 
| 169 | 
             
                inputs = [
         | 
| 170 | 
             
                    prompt,
         | 
| @@ -190,7 +354,7 @@ with gr.Blocks(css="style.css") as demo: | |
| 190 | 
             
                ).then(
         | 
| 191 | 
             
                    fn=generate,
         | 
| 192 | 
             
                    inputs=inputs,
         | 
| 193 | 
            -
                    outputs=[result, gr_metadata,  | 
| 194 | 
             
                    api_name="run",
         | 
| 195 | 
             
                )
         | 
| 196 | 
             
                negative_prompt.submit(
         | 
| @@ -202,7 +366,7 @@ with gr.Blocks(css="style.css") as demo: | |
| 202 | 
             
                ).then(
         | 
| 203 | 
             
                    fn=generate,
         | 
| 204 | 
             
                    inputs=inputs,
         | 
| 205 | 
            -
                    outputs=[result, gr_metadata,  | 
| 206 | 
             
                    api_name=False,
         | 
| 207 | 
             
                )
         | 
| 208 | 
             
                run_button.click(
         | 
| @@ -214,7 +378,7 @@ with gr.Blocks(css="style.css") as demo: | |
| 214 | 
             
                ).then(
         | 
| 215 | 
             
                    fn=generate,
         | 
| 216 | 
             
                    inputs=inputs,
         | 
| 217 | 
            -
                    outputs=[result, gr_metadata,  | 
| 218 | 
             
                    api_name=False,
         | 
| 219 | 
             
                )
         | 
| 220 |  | 
|  | |
| 27 | 
             
            USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
         | 
| 28 | 
             
            ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
         | 
| 29 | 
             
            OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
         | 
|  | |
| 30 |  | 
| 31 | 
             
            MODEL = os.getenv(
         | 
| 32 | 
             
                "MODEL",
         | 
|  | |
| 38 |  | 
| 39 | 
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         | 
| 40 |  | 
| 41 | 
            +
            # Add a new global variable to store the image history
         | 
| 42 | 
            +
            image_history = []
         | 
| 43 |  | 
| 44 | 
             
            def load_pipeline(model_name):
         | 
| 45 | 
            +
                vae = AutoencoderKL.from_pretrained(
         | 
| 46 | 
            +
                    "madebyollin/sdxl-vae-fp16-fix",
         | 
| 47 | 
            +
                    torch_dtype=torch.float16,
         | 
| 48 | 
            +
                )
         | 
| 49 | 
            +
                pipeline = (
         | 
| 50 | 
            +
                    StableDiffusionXLPipeline.from_single_file
         | 
| 51 | 
            +
                    if MODEL.endswith(".safetensors")
         | 
| 52 | 
            +
                    else StableDiffusionXLPipeline.from_pretrained
         | 
| 53 | 
            +
                )
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                pipe = pipeline(
         | 
| 56 | 
            +
                    model_name,
         | 
| 57 | 
            +
                    vae=vae,
         | 
| 58 | 
            +
                    torch_dtype=torch.float16,
         | 
| 59 | 
            +
                    custom_pipeline="lpw_stable_diffusion_xl",
         | 
| 60 | 
            +
                    use_safetensors=True,
         | 
| 61 | 
            +
                    add_watermarker=False,
         | 
| 62 | 
            +
                    use_auth_token=HF_TOKEN,
         | 
| 63 | 
            +
                    variant="fp16",
         | 
| 64 | 
            +
                )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                pipe.to(device)
         | 
| 67 | 
            +
                return pipe
         | 
| 68 |  | 
| 69 | 
             
            @spaces.GPU
         | 
| 70 | 
             
            def generate(
         | 
|  | |
| 82 | 
             
                upscale_by: float = 1.5,
         | 
| 83 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 84 | 
             
            ) -> Image:
         | 
| 85 | 
            +
                generator = utils.seed_everything(seed)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                width, height = utils.aspect_ratio_handler(
         | 
| 88 | 
            +
                    aspect_ratio_selector,
         | 
| 89 | 
            +
                    custom_width,
         | 
| 90 | 
            +
                    custom_height,
         | 
| 91 | 
            +
                )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                width, height = utils.preprocess_image_dimensions(width, height)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                backup_scheduler = pipe.scheduler
         | 
| 96 | 
            +
                pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                if use_upscaler:
         | 
| 99 | 
            +
                    upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
         | 
| 100 | 
            +
                metadata = {
         | 
| 101 | 
            +
                    "prompt": prompt,
         | 
| 102 | 
            +
                    "negative_prompt": negative_prompt,
         | 
| 103 | 
            +
                    "resolution": f"{width} x {height}",
         | 
| 104 | 
            +
                    "guidance_scale": guidance_scale,
         | 
| 105 | 
            +
                    "num_inference_steps": num_inference_steps,
         | 
| 106 | 
            +
                    "seed": seed,
         | 
| 107 | 
            +
                    "sampler": sampler,
         | 
| 108 | 
            +
                }
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                if use_upscaler:
         | 
| 111 | 
            +
                    new_width = int(width * upscale_by)
         | 
| 112 | 
            +
                    new_height = int(height * upscale_by)
         | 
| 113 | 
            +
                    metadata["use_upscaler"] = {
         | 
| 114 | 
            +
                        "upscale_method": "nearest-exact",
         | 
| 115 | 
            +
                        "upscaler_strength": upscaler_strength,
         | 
| 116 | 
            +
                        "upscale_by": upscale_by,
         | 
| 117 | 
            +
                        "new_resolution": f"{new_width} x {new_height}",
         | 
| 118 | 
            +
                    }
         | 
| 119 | 
            +
                else:
         | 
| 120 | 
            +
                    metadata["use_upscaler"] = None
         | 
| 121 | 
            +
                logger.info(json.dumps(metadata, indent=4))
         | 
| 122 |  | 
| 123 | 
             
                try:
         | 
| 124 | 
            +
                    if use_upscaler:
         | 
| 125 | 
            +
                        latents = pipe(
         | 
| 126 | 
            +
                            prompt=prompt,
         | 
| 127 | 
            +
                            negative_prompt=negative_prompt,
         | 
| 128 | 
            +
                            width=width,
         | 
| 129 | 
            +
                            height=height,
         | 
| 130 | 
            +
                            guidance_scale=guidance_scale,
         | 
| 131 | 
            +
                            num_inference_steps=num_inference_steps,
         | 
| 132 | 
            +
                            generator=generator,
         | 
| 133 | 
            +
                            output_type="latent",
         | 
| 134 | 
            +
                        ).images
         | 
| 135 | 
            +
                        upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
         | 
| 136 | 
            +
                        images = upscaler_pipe(
         | 
| 137 | 
            +
                            prompt=prompt,
         | 
| 138 | 
            +
                            negative_prompt=negative_prompt,
         | 
| 139 | 
            +
                            image=upscaled_latents,
         | 
| 140 | 
            +
                            guidance_scale=guidance_scale,
         | 
| 141 | 
            +
                            num_inference_steps=num_inference_steps,
         | 
| 142 | 
            +
                            strength=upscaler_strength,
         | 
| 143 | 
            +
                            generator=generator,
         | 
| 144 | 
            +
                            output_type="pil",
         | 
| 145 | 
            +
                        ).images
         | 
| 146 | 
            +
                    else:
         | 
| 147 | 
            +
                        images = pipe(
         | 
| 148 | 
            +
                            prompt=prompt,
         | 
| 149 | 
            +
                            negative_prompt=negative_prompt,
         | 
| 150 | 
            +
                            width=width,
         | 
| 151 | 
            +
                            height=height,
         | 
| 152 | 
            +
                            guidance_scale=guidance_scale,
         | 
| 153 | 
            +
                            num_inference_steps=num_inference_steps,
         | 
| 154 | 
            +
                            generator=generator,
         | 
| 155 | 
            +
                            output_type="pil",
         | 
| 156 | 
            +
                        ).images
         | 
| 157 |  | 
| 158 | 
            +
                    if images and IS_COLAB:
         | 
| 159 | 
            +
                        for image in images:
         | 
| 160 | 
            +
                            filepath = utils.save_image(image, metadata, OUTPUT_DIR)
         | 
| 161 | 
            +
                            logger.info(f"Image saved as {filepath} with metadata")
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    # Add the generated image and metadata to the history
         | 
| 164 | 
            +
                    for image in images:
         | 
| 165 | 
            +
                        thumbnail = image.copy()
         | 
| 166 | 
            +
                        thumbnail.thumbnail((256, 256))
         | 
| 167 | 
            +
                        image_history.insert(0, {
         | 
| 168 | 
            +
                            "image": thumbnail,
         | 
| 169 | 
             
                            "prompt": prompt,
         | 
|  | |
| 170 | 
             
                            "metadata": metadata
         | 
| 171 | 
             
                        })
         | 
| 172 |  | 
| 173 | 
            +
                    return images, metadata, gr.update(value=image_history)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 174 | 
             
                except Exception as e:
         | 
| 175 | 
             
                    logger.exception(f"An error occurred: {e}")
         | 
| 176 | 
             
                    raise
         | 
|  | |
| 180 | 
             
                    pipe.scheduler = backup_scheduler
         | 
| 181 | 
             
                    utils.free_memory()
         | 
| 182 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 183 | 
             
            if torch.cuda.is_available():
         | 
| 184 | 
             
                pipe = load_pipeline(MODEL)
         | 
| 185 | 
             
                logger.info("Loaded on Device!")
         | 
|  | |
| 202 | 
             
                )
         | 
| 203 | 
             
                with gr.Group():
         | 
| 204 | 
             
                    with gr.Row():
         | 
| 205 | 
            +
                        with gr.Column(scale=2):
         | 
| 206 | 
            +
                            prompt = gr.Text(
         | 
| 207 | 
            +
                                label="Prompt",
         | 
| 208 | 
            +
                                show_label=False,
         | 
| 209 | 
            +
                                max_lines=5,
         | 
| 210 | 
            +
                                placeholder="Enter your prompt",
         | 
| 211 | 
            +
                                container=False,
         | 
| 212 | 
            +
                            )
         | 
| 213 | 
            +
                            run_button = gr.Button(
         | 
| 214 | 
            +
                                "Generate", 
         | 
| 215 | 
            +
                                variant="primary", 
         | 
| 216 | 
            +
                                scale=0
         | 
| 217 | 
            +
                            )
         | 
| 218 | 
            +
                            result = gr.Gallery(
         | 
| 219 | 
            +
                                label="Result", 
         | 
| 220 | 
            +
                                columns=1, 
         | 
| 221 | 
            +
                                preview=True, 
         | 
| 222 | 
            +
                                show_label=False
         | 
| 223 | 
            +
                            )
         | 
| 224 | 
            +
                        
         | 
| 225 | 
            +
                        with gr.Column(scale=1):
         | 
| 226 | 
            +
                            history = gr.Gallery(
         | 
| 227 | 
            +
                                label="Generation History",
         | 
| 228 | 
            +
                                show_label=True,
         | 
| 229 | 
            +
                                elem_id="history",
         | 
| 230 | 
            +
                                columns=2,
         | 
| 231 | 
            +
                                height=800,
         | 
| 232 | 
            +
                            )
         | 
| 233 |  | 
| 234 | 
             
                with gr.Accordion(label="Advanced Settings", open=False):
         | 
| 235 | 
            +
                    negative_prompt = gr.Text(
         | 
| 236 | 
            +
                        label="Negative Prompt",
         | 
| 237 | 
            +
                        max_lines=5,
         | 
| 238 | 
            +
                        placeholder="Enter a negative prompt",
         | 
| 239 | 
            +
                        value=""
         | 
| 240 | 
            +
                    )
         | 
| 241 | 
            +
                    aspect_ratio_selector = gr.Radio(
         | 
| 242 | 
            +
                        label="Aspect Ratio",
         | 
| 243 | 
            +
                        choices=config.aspect_ratios,
         | 
| 244 | 
            +
                        value="1024 x 1024",
         | 
| 245 | 
            +
                        container=True,
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                    with gr.Group(visible=False) as custom_resolution:
         | 
| 248 | 
            +
                        with gr.Row():
         | 
| 249 | 
            +
                            custom_width = gr.Slider(
         | 
| 250 | 
            +
                                label="Width",
         | 
| 251 | 
            +
                                minimum=MIN_IMAGE_SIZE,
         | 
| 252 | 
            +
                                maximum=MAX_IMAGE_SIZE,
         | 
| 253 | 
            +
                                step=8,
         | 
| 254 | 
            +
                                value=1024,
         | 
| 255 | 
            +
                            )
         | 
| 256 | 
            +
                            custom_height = gr.Slider(
         | 
| 257 | 
            +
                                label="Height",
         | 
| 258 | 
            +
                                minimum=MIN_IMAGE_SIZE,
         | 
| 259 | 
            +
                                maximum=MAX_IMAGE_SIZE,
         | 
| 260 | 
            +
                                step=8,
         | 
| 261 | 
            +
                                value=1024,
         | 
| 262 | 
            +
                            )
         | 
| 263 | 
            +
                    use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
         | 
| 264 | 
            +
                    with gr.Row() as upscaler_row:
         | 
| 265 | 
            +
                        upscaler_strength = gr.Slider(
         | 
| 266 | 
            +
                            label="Strength",
         | 
| 267 | 
            +
                            minimum=0,
         | 
| 268 | 
            +
                            maximum=1,
         | 
| 269 | 
            +
                            step=0.05,
         | 
| 270 | 
            +
                            value=0.55,
         | 
| 271 | 
            +
                            visible=False,
         | 
| 272 | 
            +
                        )
         | 
| 273 | 
            +
                        upscale_by = gr.Slider(
         | 
| 274 | 
            +
                            label="Upscale by",
         | 
| 275 | 
            +
                            minimum=1,
         | 
| 276 | 
            +
                            maximum=1.5,
         | 
| 277 | 
            +
                            step=0.1,
         | 
| 278 | 
            +
                            value=1.5,
         | 
| 279 | 
            +
                            visible=False,
         | 
| 280 | 
            +
                        )
         | 
| 281 |  | 
| 282 | 
            +
                    sampler = gr.Dropdown(
         | 
| 283 | 
            +
                        label="Sampler",
         | 
| 284 | 
            +
                        choices=config.sampler_list,
         | 
| 285 | 
            +
                        interactive=True,
         | 
| 286 | 
            +
                        value="DPM++ 2M SDE Karras",
         | 
| 287 | 
            +
                    )
         | 
| 288 | 
            +
                    with gr.Row():
         | 
| 289 | 
            +
                        seed = gr.Slider(
         | 
| 290 | 
            +
                            label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
         | 
| 291 | 
            +
                        )
         | 
| 292 | 
            +
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
         | 
| 293 | 
            +
                    with gr.Group():
         | 
| 294 | 
            +
                        with gr.Row():
         | 
| 295 | 
            +
                            guidance_scale = gr.Slider(
         | 
| 296 | 
            +
                                label="Guidance scale",
         | 
| 297 | 
            +
                                minimum=1,
         | 
| 298 | 
            +
                                maximum=12,
         | 
| 299 | 
            +
                                step=0.1,
         | 
| 300 | 
            +
                                value=7.0,
         | 
| 301 | 
            +
                            )
         | 
| 302 | 
            +
                            num_inference_steps = gr.Slider(
         | 
| 303 | 
            +
                                label="Number of inference steps",
         | 
| 304 | 
            +
                                minimum=1,
         | 
| 305 | 
            +
                                maximum=50,
         | 
| 306 | 
            +
                                step=1,
         | 
| 307 | 
            +
                                value=28,
         | 
| 308 | 
            +
                            )
         | 
| 309 | 
             
                with gr.Accordion(label="Generation Parameters", open=False):
         | 
| 310 | 
             
                    gr_metadata = gr.JSON(label="Metadata", show_label=False)
         | 
|  | |
| 311 | 
             
                gr.Examples(
         | 
| 312 | 
             
                    examples=config.examples,
         | 
| 313 | 
             
                    inputs=prompt,
         | 
| 314 | 
            +
                    outputs=[result, gr_metadata, history],
         | 
| 315 | 
             
                    fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
         | 
| 316 | 
             
                    cache_examples=CACHE_EXAMPLES,
         | 
| 317 | 
             
                )
         | 
| 318 | 
            +
                use_upscaler.change(
         | 
| 319 | 
            +
                    fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
         | 
| 320 | 
            +
                    inputs=use_upscaler,
         | 
| 321 | 
            +
                    outputs=[upscaler_strength, upscale_by],
         | 
| 322 | 
            +
                    queue=False,
         | 
| 323 | 
            +
                    api_name=False,
         | 
| 324 | 
            +
                )
         | 
| 325 | 
            +
                aspect_ratio_selector.change(
         | 
| 326 | 
            +
                    fn=lambda x: gr.update(visible=x == "Custom"),
         | 
| 327 | 
            +
                    inputs=aspect_ratio_selector,
         | 
| 328 | 
            +
                    outputs=custom_resolution,
         | 
| 329 | 
            +
                    queue=False,
         | 
| 330 | 
            +
                    api_name=False,
         | 
| 331 | 
            +
                )
         | 
| 332 |  | 
| 333 | 
             
                inputs = [
         | 
| 334 | 
             
                    prompt,
         | 
|  | |
| 354 | 
             
                ).then(
         | 
| 355 | 
             
                    fn=generate,
         | 
| 356 | 
             
                    inputs=inputs,
         | 
| 357 | 
            +
                    outputs=[result, gr_metadata, history],
         | 
| 358 | 
             
                    api_name="run",
         | 
| 359 | 
             
                )
         | 
| 360 | 
             
                negative_prompt.submit(
         | 
|  | |
| 366 | 
             
                ).then(
         | 
| 367 | 
             
                    fn=generate,
         | 
| 368 | 
             
                    inputs=inputs,
         | 
| 369 | 
            +
                    outputs=[result, gr_metadata, history],
         | 
| 370 | 
             
                    api_name=False,
         | 
| 371 | 
             
                )
         | 
| 372 | 
             
                run_button.click(
         | 
|  | |
| 378 | 
             
                ).then(
         | 
| 379 | 
             
                    fn=generate,
         | 
| 380 | 
             
                    inputs=inputs,
         | 
| 381 | 
            +
                    outputs=[result, gr_metadata, history],
         | 
| 382 | 
             
                    api_name=False,
         | 
| 383 | 
             
                )
         | 
| 384 |  | 
 
			
