Spaces:
Running
on
Zero
Running
on
Zero
app v2
Browse files
app.py
CHANGED
@@ -38,34 +38,34 @@ torch.backends.cudnn.benchmark = False
|
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
|
|
41 |
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
@spaces.GPU
|
69 |
def generate(
|
70 |
prompt: str,
|
71 |
negative_prompt: str = "",
|
@@ -81,283 +81,65 @@ def generate(
|
|
81 |
upscale_by: float = 1.5,
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
) -> Image:
|
84 |
-
|
85 |
-
|
86 |
-
width, height = utils.aspect_ratio_handler(
|
87 |
-
aspect_ratio_selector,
|
88 |
-
custom_width,
|
89 |
-
custom_height,
|
90 |
-
)
|
91 |
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
metadata = {
|
100 |
-
"prompt": prompt,
|
101 |
-
"negative_prompt": negative_prompt,
|
102 |
-
"resolution": f"{width} x {height}",
|
103 |
-
"guidance_scale": guidance_scale,
|
104 |
-
"num_inference_steps": num_inference_steps,
|
105 |
-
"seed": seed,
|
106 |
-
"sampler": sampler,
|
107 |
-
}
|
108 |
-
|
109 |
-
if use_upscaler:
|
110 |
-
new_width = int(width * upscale_by)
|
111 |
-
new_height = int(height * upscale_by)
|
112 |
-
metadata["use_upscaler"] = {
|
113 |
-
"upscale_method": "nearest-exact",
|
114 |
-
"upscaler_strength": upscaler_strength,
|
115 |
-
"upscale_by": upscale_by,
|
116 |
-
"new_resolution": f"{new_width} x {new_height}",
|
117 |
-
}
|
118 |
-
else:
|
119 |
-
metadata["use_upscaler"] = None
|
120 |
-
logger.info(json.dumps(metadata, indent=4))
|
121 |
-
|
122 |
-
try:
|
123 |
-
if use_upscaler:
|
124 |
-
latents = pipe(
|
125 |
-
prompt=prompt,
|
126 |
-
negative_prompt=negative_prompt,
|
127 |
-
width=width,
|
128 |
-
height=height,
|
129 |
-
guidance_scale=guidance_scale,
|
130 |
-
num_inference_steps=num_inference_steps,
|
131 |
-
generator=generator,
|
132 |
-
output_type="latent",
|
133 |
-
).images
|
134 |
-
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
135 |
-
images = upscaler_pipe(
|
136 |
-
prompt=prompt,
|
137 |
-
negative_prompt=negative_prompt,
|
138 |
-
image=upscaled_latents,
|
139 |
-
guidance_scale=guidance_scale,
|
140 |
-
num_inference_steps=num_inference_steps,
|
141 |
-
strength=upscaler_strength,
|
142 |
-
generator=generator,
|
143 |
-
output_type="pil",
|
144 |
-
).images
|
145 |
-
else:
|
146 |
-
images = pipe(
|
147 |
-
prompt=prompt,
|
148 |
-
negative_prompt=negative_prompt,
|
149 |
-
width=width,
|
150 |
-
height=height,
|
151 |
-
guidance_scale=guidance_scale,
|
152 |
-
num_inference_steps=num_inference_steps,
|
153 |
-
generator=generator,
|
154 |
-
output_type="pil",
|
155 |
-
).images
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
160 |
-
logger.info(f"Image saved as {filepath} with metadata")
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
raise
|
166 |
-
finally:
|
167 |
-
if use_upscaler:
|
168 |
-
del upscaler_pipe
|
169 |
-
pipe.scheduler = backup_scheduler
|
170 |
-
utils.free_memory()
|
171 |
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
pipe = load_pipeline(MODEL)
|
175 |
-
logger.info("Loaded on Device!")
|
176 |
-
else:
|
177 |
-
pipe = None
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
elem_id="subtitle",
|
187 |
-
)
|
188 |
-
gr.DuplicateButton(
|
189 |
-
value="Duplicate Space for private use",
|
190 |
-
elem_id="duplicate-button",
|
191 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
192 |
)
|
193 |
-
with gr.Group():
|
194 |
-
with gr.Row():
|
195 |
-
prompt = gr.Text(
|
196 |
-
label="Prompt",
|
197 |
-
show_label=False,
|
198 |
-
max_lines=5,
|
199 |
-
placeholder="Enter your prompt",
|
200 |
-
container=False,
|
201 |
-
)
|
202 |
-
run_button = gr.Button(
|
203 |
-
"Generate",
|
204 |
-
variant="primary",
|
205 |
-
scale=0
|
206 |
-
)
|
207 |
-
result = gr.Gallery(
|
208 |
-
label="Result",
|
209 |
-
columns=1,
|
210 |
-
preview=True,
|
211 |
-
show_label=False
|
212 |
-
)
|
213 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
214 |
-
negative_prompt = gr.Text(
|
215 |
-
label="Negative Prompt",
|
216 |
-
max_lines=5,
|
217 |
-
placeholder="Enter a negative prompt",
|
218 |
-
value=""
|
219 |
-
)
|
220 |
-
aspect_ratio_selector = gr.Radio(
|
221 |
-
label="Aspect Ratio",
|
222 |
-
choices=config.aspect_ratios,
|
223 |
-
value="1024 x 1024",
|
224 |
-
container=True,
|
225 |
-
)
|
226 |
-
with gr.Group(visible=False) as custom_resolution:
|
227 |
-
with gr.Row():
|
228 |
-
custom_width = gr.Slider(
|
229 |
-
label="Width",
|
230 |
-
minimum=MIN_IMAGE_SIZE,
|
231 |
-
maximum=MAX_IMAGE_SIZE,
|
232 |
-
step=8,
|
233 |
-
value=1024,
|
234 |
-
)
|
235 |
-
custom_height = gr.Slider(
|
236 |
-
label="Height",
|
237 |
-
minimum=MIN_IMAGE_SIZE,
|
238 |
-
maximum=MAX_IMAGE_SIZE,
|
239 |
-
step=8,
|
240 |
-
value=1024,
|
241 |
-
)
|
242 |
-
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
243 |
-
with gr.Row() as upscaler_row:
|
244 |
-
upscaler_strength = gr.Slider(
|
245 |
-
label="Strength",
|
246 |
-
minimum=0,
|
247 |
-
maximum=1,
|
248 |
-
step=0.05,
|
249 |
-
value=0.55,
|
250 |
-
visible=False,
|
251 |
-
)
|
252 |
-
upscale_by = gr.Slider(
|
253 |
-
label="Upscale by",
|
254 |
-
minimum=1,
|
255 |
-
maximum=1.5,
|
256 |
-
step=0.1,
|
257 |
-
value=1.5,
|
258 |
-
visible=False,
|
259 |
-
)
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
with gr.Group():
|
273 |
-
with gr.Row():
|
274 |
-
guidance_scale = gr.Slider(
|
275 |
-
label="Guidance scale",
|
276 |
-
minimum=1,
|
277 |
-
maximum=12,
|
278 |
-
step=0.1,
|
279 |
-
value=7.0,
|
280 |
-
)
|
281 |
-
num_inference_steps = gr.Slider(
|
282 |
-
label="Number of inference steps",
|
283 |
-
minimum=1,
|
284 |
-
maximum=50,
|
285 |
-
step=1,
|
286 |
-
value=28,
|
287 |
-
)
|
288 |
-
with gr.Accordion(label="Generation Parameters", open=False):
|
289 |
-
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
290 |
-
gr.Examples(
|
291 |
-
examples=config.examples,
|
292 |
-
inputs=prompt,
|
293 |
-
outputs=[result, gr_metadata],
|
294 |
-
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
295 |
-
cache_examples=CACHE_EXAMPLES,
|
296 |
)
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
api_name=False,
|
303 |
)
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
api_name=False,
|
310 |
)
|
311 |
|
312 |
-
|
313 |
-
prompt,
|
314 |
-
negative_prompt,
|
315 |
-
seed,
|
316 |
-
custom_width,
|
317 |
-
custom_height,
|
318 |
-
guidance_scale,
|
319 |
-
num_inference_steps,
|
320 |
-
sampler,
|
321 |
-
aspect_ratio_selector,
|
322 |
-
use_upscaler,
|
323 |
-
upscaler_strength,
|
324 |
-
upscale_by,
|
325 |
-
]
|
326 |
|
327 |
-
prompt.submit(
|
328 |
-
fn=utils.randomize_seed_fn,
|
329 |
-
inputs=[seed, randomize_seed],
|
330 |
-
outputs=seed,
|
331 |
-
queue=False,
|
332 |
-
api_name=False,
|
333 |
-
).then(
|
334 |
-
fn=generate,
|
335 |
-
inputs=inputs,
|
336 |
-
outputs=result,
|
337 |
-
api_name="run",
|
338 |
-
)
|
339 |
-
negative_prompt.submit(
|
340 |
-
fn=utils.randomize_seed_fn,
|
341 |
-
inputs=[seed, randomize_seed],
|
342 |
-
outputs=seed,
|
343 |
-
queue=False,
|
344 |
-
api_name=False,
|
345 |
-
).then(
|
346 |
-
fn=generate,
|
347 |
-
inputs=inputs,
|
348 |
-
outputs=result,
|
349 |
-
api_name=False,
|
350 |
-
)
|
351 |
-
run_button.click(
|
352 |
-
fn=utils.randomize_seed_fn,
|
353 |
-
inputs=[seed, randomize_seed],
|
354 |
-
outputs=seed,
|
355 |
-
queue=False,
|
356 |
-
api_name=False,
|
357 |
-
).then(
|
358 |
-
fn=generate,
|
359 |
-
inputs=inputs,
|
360 |
-
outputs=[result, gr_metadata],
|
361 |
-
api_name=False,
|
362 |
-
)
|
363 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
41 |
+
# Load pipeline function remains unchanged
|
42 |
|
43 |
+
def parse_json_parameters(json_str):
|
44 |
+
try:
|
45 |
+
params = json.loads(json_str)
|
46 |
+
return params
|
47 |
+
except json.JSONDecodeError:
|
48 |
+
return None
|
49 |
+
|
50 |
+
def apply_json_parameters(json_str):
|
51 |
+
params = parse_json_parameters(json_str)
|
52 |
+
if params:
|
53 |
+
return (
|
54 |
+
params.get("prompt", ""),
|
55 |
+
params.get("negative_prompt", ""),
|
56 |
+
params.get("seed", 0),
|
57 |
+
params.get("width", 1024),
|
58 |
+
params.get("height", 1024),
|
59 |
+
params.get("guidance_scale", 7.0),
|
60 |
+
params.get("num_inference_steps", 30),
|
61 |
+
params.get("sampler", "DPM++ 2M SDE Karras"),
|
62 |
+
params.get("aspect_ratio", "1024 x 1024"),
|
63 |
+
params.get("use_upscaler", False),
|
64 |
+
params.get("upscaler_strength", 0.55),
|
65 |
+
params.get("upscale_by", 1.5),
|
66 |
+
)
|
67 |
+
return [gr.update()] * 12
|
68 |
|
|
|
69 |
def generate(
|
70 |
prompt: str,
|
71 |
negative_prompt: str = "",
|
|
|
81 |
upscale_by: float = 1.5,
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
) -> Image:
|
84 |
+
# Existing generate function code...
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Update history after generation
|
87 |
+
history = gr.get_state("history") or []
|
88 |
+
history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata})
|
89 |
+
gr.set_state("history", history[:10]) # Keep only the last 10 entries
|
90 |
|
91 |
+
return images, metadata, gr.update(choices=[h["prompt"] for h in history])
|
|
|
92 |
|
93 |
+
def get_random_prompt():
|
94 |
+
return random.choice(config.examples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
with gr.Blocks(css="style.css") as demo:
|
97 |
+
# Existing UI elements...
|
|
|
|
|
98 |
|
99 |
+
with gr.Accordion(label="JSON Parameters", open=False):
|
100 |
+
json_input = gr.TextArea(label="Input JSON parameters")
|
101 |
+
apply_json_button = gr.Button("Apply JSON Parameters")
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
with gr.Row():
|
104 |
+
clear_button = gr.Button("Clear All")
|
105 |
+
random_prompt_button = gr.Button("Random Prompt")
|
106 |
|
107 |
+
history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True)
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Connect components
|
110 |
+
apply_json_button.click(
|
111 |
+
fn=apply_json_parameters,
|
112 |
+
inputs=json_input,
|
113 |
+
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
|
114 |
+
guidance_scale, num_inference_steps, sampler,
|
115 |
+
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
clear_button.click(
|
119 |
+
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0),
|
120 |
+
gr.update(value=1024), gr.update(value=1024),
|
121 |
+
gr.update(value=7.0), gr.update(value=30),
|
122 |
+
gr.update(value="DPM++ 2M SDE Karras"),
|
123 |
+
gr.update(value="1024 x 1024"), gr.update(value=False),
|
124 |
+
gr.update(value=0.55), gr.update(value=1.5)),
|
125 |
+
inputs=[],
|
126 |
+
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
|
127 |
+
guidance_scale, num_inference_steps, sampler,
|
128 |
+
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
)
|
130 |
+
|
131 |
+
random_prompt_button.click(
|
132 |
+
fn=get_random_prompt,
|
133 |
+
inputs=[],
|
134 |
+
outputs=prompt
|
|
|
135 |
)
|
136 |
+
|
137 |
+
history_dropdown.change(
|
138 |
+
fn=lambda x: gr.update(value=x),
|
139 |
+
inputs=history_dropdown,
|
140 |
+
outputs=prompt
|
|
|
141 |
)
|
142 |
|
143 |
+
# Existing event handlers...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|