Spaces:
Build error
Build error
File size: 4,793 Bytes
7823cea e4617b7 7823cea 2592e48 b78ec6d 36f95d9 9bc27e3 2592e48 a36d980 6773de5 78e29c2 36f95d9 6773de5 8d88e43 ae0535c 8d88e43 9fd2ec3 6773de5 db84863 9fd2ec3 ae0535c 6773de5 97364cf 59cebaf fff17ea 7823cea 78e29c2 6773de5 36f95d9 e4617b7 6773de5 7823cea 97364cf e4617b7 8d88e43 e4617b7 6c43e7e ff6b580 e4617b7 6c43e7e 6773de5 97364cf 6773de5 ff6b580 e4617b7 9bc27e3 e4617b7 7823cea fff17ea 97364cf 7823cea 59cebaf fff17ea 59cebaf fff17ea 9bc27e3 ff6b580 6773de5 bf687e5 7823cea fff17ea bf687e5 7823cea 36f95d9 7823cea bf687e5 6773de5 17df602 7823cea d771ba3 6773de5 7823cea 6773de5 bf687e5 6773de5 36f95d9 fff17ea 6773de5 fff17ea bf687e5 7823cea bf687e5 f134081 6773de5 bf687e5 7823cea 6773de5 bf687e5 8fed1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import numpy as np
from PIL import Image, UnidentifiedImageError
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import os
import pickle
from pathlib import Path
import gc
import requests
from io import BytesIO
# 📁 Directorio para almacenar embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
# ✅ Cargar dataset desde metadata.csv (con URLs absolutas)
dataset = load_dataset(
"csv",
data_files="metadata.csv",
split="train",
column_names=["image"], # 👈 forzar el nombre de la columna
header=0 # 👈 indicar que la primera fila es encabezado
)
print("Primeros 5 ítems:")
for i in range(5):
print(dataset[i])
print("✅ Primer item:", dataset[0])
# 🔄 Preprocesar imagen para DeepFace
def preprocess_image(img: Image.Image) -> np.ndarray:
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
if EMBEDDINGS_FILE.exists():
print("📂 Cargando embeddings desde archivo...")
with open(EMBEDDINGS_FILE, "rb") as f:
return pickle.load(f)
print("🔄 Calculando embeddings...")
database = []
batch_size = 10
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
for j, item in enumerate(batch):
try:
# Validar estructura
if not isinstance(item, dict) or "image" not in item:
print(f"⚠️ Saltando item {i + j} - estructura inválida: {item}")
continue
image_url = item["image"]
# Validar tipo y formato
if not isinstance(image_url, str) or not image_url.startswith("http"):
print(f"⚠️ Saltando item {i + j} - URL inválida: {image_url}")
continue
# Descargar y procesar imagen
response = requests.get(image_url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert("RGB")
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i + j}", img, embedding))
print(f"✅ Procesada imagen {i + j + 1}/{len(dataset)}")
del img_processed
gc.collect()
except Exception as e:
print(f"❌ Error al procesar imagen {i + j}: {str(e)}")
continue
# Guardar después de cada batch
if database:
print("💾 Guardando embeddings...")
with open(EMBEDDINGS_FILE, "wb") as f:
pickle.dump(database, f)
gc.collect()
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image: Image.Image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
del img_processed
gc.collect()
except Exception as e:
print(f"Error al procesar imagen de entrada: {str(e)}")
return [], "⚠ No se detectó un rostro válido."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:5]
gallery_items = []
summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((img, caption))
summary += caption + "\n"
return gallery_items, summary
# 🚀 Inicializar app
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base cargada con {len(database)} imágenes.")
# 🎛️ Interfaz Gradio
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Resumen de similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition`."
)
demo.launch()
|