lukecq's picture
udpate the results format
541cf85
raw
history blame
2.83 kB
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data
# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
RESULTS_REPO = f"SeaLLMs/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
token=TOKEN
)
def restart_space():
API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN)
# Load the data from the csv file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-Sum", id=0):
leaderboard_table = gr.components.Dataframe(
value=df_avg,
# value=leaderboard_df[
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
# + shown_columns.value
# + [AutoEvalColumn.dummy.name]
# ],
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
# datatype=TYPES,
# elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
)
with gr.TabItem("πŸ… M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
leaderboard_table = gr.components.Dataframe(
value=df_m3exam,
interactive=False,
visible=True,
)
with gr.TabItem("πŸ… MMLU", elem_id="llm-benchmark-MMLU", id=2):
leaderboard_table = gr.components.Dataframe(
value=df_mmlu,
interactive=False,
visible=True,
)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)