File size: 2,830 Bytes
65c6479
441cdc8
 
e608ddc
97d7225
65c6479
9c1b957
 
 
 
 
 
 
 
 
97d7225
541cf85
9c1b957
e608ddc
 
85b9042
e608ddc
 
 
 
 
 
 
65c6479
97d7225
85b9042
97d7225
541cf85
1e647ba
 
441cdc8
9c1b957
 
 
d0bceed
9c1b957
541cf85
9c1b957
1e647ba
9c1b957
 
 
 
 
 
 
 
 
 
74fdd72
9c1b957
cfb8d80
 
1e647ba
cfb8d80
 
 
653c0f4
cfb8d80
1e647ba
cfb8d80
 
 
 
4d3390f
441cdc8
9c1b957
97d7225
 
cfb8d80
97d7225
653c0f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data

# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
RESULTS_REPO = f"SeaLLMs/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
    repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", 
    token=TOKEN
)

def restart_space():
    API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN)

# Load the data from the csv file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
df_m3exam, df_mmlu, df_avg = load_data(csv_path)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-Sum", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=df_avg,
                # value=leaderboard_df[
                #     [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                #     + shown_columns.value
                #     + [AutoEvalColumn.dummy.name]
                # ],
                # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                # datatype=TYPES,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )
        with gr.TabItem("πŸ… M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
            leaderboard_table = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=True,
            )
        with gr.TabItem("πŸ… MMLU", elem_id="llm-benchmark-MMLU", id=2):
            leaderboard_table = gr.components.Dataframe(
                value=df_mmlu,
                interactive=False,
                visible=True,
            )
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

demo.launch()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)