import gradio as gr import pandas as pd import os from huggingface_hub import snapshot_download from apscheduler.schedulers.background import BackgroundScheduler from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.envs import API from src.leaderboard.load_results import load_data # clone / pull the lmeh eval data TOKEN = os.environ.get("TOKEN", None) RESULTS_REPO = f"SeaLLMs/SeaExam-results" CACHE_PATH=os.getenv("HF_HOME", ".") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", token=TOKEN ) def restart_space(): API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN) # Load the data from the csv file csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv' df_m3exam, df_mmlu, df_avg = load_data(csv_path) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Overall", elem_id="llm-benchmark-Sum", id=0): leaderboard_table = gr.components.Dataframe( value=df_avg, # value=leaderboard_df[ # [c.name for c in fields(AutoEvalColumn) if c.never_hidden] # + shown_columns.value # + [AutoEvalColumn.dummy.name] # ], # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, # datatype=TYPES, # elem_id="leaderboard-table", interactive=False, visible=True, # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"], ) with gr.TabItem("🏅 M3Exam", elem_id="llm-benchmark-M3Exam", id=1): leaderboard_table = gr.components.Dataframe( value=df_m3exam, interactive=False, visible=True, ) with gr.TabItem("🏅 MMLU", elem_id="llm-benchmark-MMLU", id=2): leaderboard_table = gr.components.Dataframe( value=df_mmlu, interactive=False, visible=True, ) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") demo.launch() scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch(share=True)