Spaces:
Running
Running
File size: 6,306 Bytes
8ef6cb8 3e21c23 9b2e64c 3e21c23 8ef6cb8 3e21c23 8ef6cb8 90a2d71 8ef6cb8 e8fb4fe dca9086 9b2e64c 2655969 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 90b162b 9b2e64c 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 dcf800f 1c0fddd 8ef6cb8 dcf800f 3e21c23 032ced1 3e21c23 dcf800f 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 3e21c23 8ef6cb8 032ced1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
from datetime import datetime
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_parse import LlamaParse
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
import os
from dotenv import load_dotenv
import gradio as gr
# Load environment variables
load_dotenv()
models = [
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"meta-llama/Meta-Llama-3-8B-Instruct",
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
# "impira/layoutlm-document-qa", ## ERR
# "Qwen/Qwen1.5-7B", ## 15GB
# "Qwen/Qwen2.5-3B", ## high response time
# "google/gemma-2-2b-jpn-it", ## high response time
# "impira/layoutlm-invoices", ## bad req
# "google/pix2struct-docvqa-large", ## bad req
"mistralai/Mistral-7B-Instruct-v0.2",
# "google/gemma-7b-it", ## 17GB > 10GB
# "google/gemma-2b-it", ## high response time
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
# "microsoft/phi-2", ## high response time
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
"tiiuae/falcon-7b-instruct",
# "google/flan-t5-xxl" ## high respons time
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
]
# Global variable for selected model
selected_model_name = models[0] # Default to the first model in the list
# Initialize the parser
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
# Define file extractor with various common extensions
file_extractor = {
'.pdf': parser, # PDF documents
'.docx': parser, # Microsoft Word documents
'.doc': parser, # Older Microsoft Word documents
'.txt': parser, # Plain text files
'.csv': parser, # Comma-separated values files
'.xlsx': parser, # Microsoft Excel files (requires additional processing for tables)
'.pptx': parser, # Microsoft PowerPoint files (for slides)
'.html': parser, # HTML files (web pages)
# '.rtf': parser, # Rich Text Format files
# '.odt': parser, # OpenDocument Text files
# '.epub': parser, # ePub files (e-books)
# Image files for OCR processing
'.jpg': parser, # JPEG images
'.jpeg': parser, # JPEG images
'.png': parser, # PNG images
# '.bmp': parser, # Bitmap images
# '.tiff': parser, # TIFF images
# '.tif': parser, # TIFF images (alternative extension)
# '.gif': parser, # GIF images (can contain text)
# Scanned documents in image formats
'.webp': parser, # WebP images
'.svg': parser, # SVG files (vector format, may contain embedded text)
}
# Embedding model and index initialization (to be populated by uploaded files)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") ## Works good and fast
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en") ## works good
# embed_model2 = HuggingFaceEmbedding(model_name="NeuML/pubmedbert-base-embeddings") ## works good
# sentence-transformers/distilbert-base-nli-mean-tokens
# BAAI/bge-large-en
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Global variable to store documents loaded from user-uploaded files
vector_index = None
# File processing function
def load_files(file_path: str):
try:
global vector_index
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
print(f"Parsing done for {file_path}")
filename = os.path.basename(file_path)
return f"Ready to give response on {filename}"
except Exception as e:
return f"An error occurred: {e}"
# Function to handle the selected model from dropdown
def set_model(selected_model):
global selected_model_name
selected_model_name = selected_model # Update the global variable
# print(f"Model selected: {selected_model_name}")
# return f"Model set to: {selected_model_name}"
# Respond function that uses the globally set selected model
def respond(message, history):
try:
# Initialize the LLM with the selected model
llm = HuggingFaceInferenceAPI(
model_name=selected_model_name,
contextWindow = 4096,
maxTokens = 4096,
temperature=0.7,
topP=0.95,
# token=os.getenv("TOKEN")
)
# Check selected model
# print(f"Using model: {selected_model_name}")
# Set up the query engine with the selected LLM
query_engine = vector_index.as_query_engine(llm=llm)
bot_message = query_engine.query(message)
print(f"\n{datetime.now()}:{selected_model_name}:: {message} --> {str(bot_message)}\n")
return f"{selected_model_name}:\n{str(bot_message)}"
except Exception as e:
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
return "Please upload a file."
return f"An error occurred: {e}"
# UI Setup
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
with gr.Row():
clear = gr.ClearButton()
btn = gr.Button("Submit", variant='primary')
output = gr.Text(label='Vector Index')
model_dropdown = gr.Dropdown(models, label="Step-2: Select Model", interactive=True)
with gr.Column(scale=3):
gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=500),
textbox=gr.Textbox(placeholder="Step-3: Ask me questions on the uploaded document!", container=False, scale=7)
)
# Set up Gradio interactions
model_dropdown.change(fn=set_model, inputs=model_dropdown)
btn.click(fn=load_files, inputs=file_input, outputs=output)
clear.click(lambda: [None] * 2, outputs=[file_input, output])
# Launch the demo with a public link option
if __name__ == "__main__":
demo.launch() |