Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -69,8 +69,9 @@ file_extractor = {
|
|
69 |
|
70 |
# Embedding model and index initialization (to be populated by uploaded files)
|
71 |
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") ## Works good
|
72 |
-
|
73 |
-
|
|
|
74 |
# sentence-transformers/distilbert-base-nli-mean-tokens
|
75 |
# BAAI/bge-large-en
|
76 |
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
@@ -106,7 +107,10 @@ def respond(message, history):
|
|
106 |
# Initialize the LLM with the selected model
|
107 |
llm = HuggingFaceInferenceAPI(
|
108 |
model_name=selected_model_name,
|
109 |
-
|
|
|
|
|
|
|
110 |
# token=os.getenv("TOKEN")
|
111 |
)
|
112 |
|
|
|
69 |
|
70 |
# Embedding model and index initialization (to be populated by uploaded files)
|
71 |
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") ## Works good
|
72 |
+
embed_model1 = HuggingFaceEmbedding(model_name="BAAI/bge-large-en") ## works good
|
73 |
+
embed_model2 = HuggingFaceEmbedding(model_name="NeuML/pubmedbert-base-embeddings")
|
74 |
+
embed_model = embed_model1+embed_model2
|
75 |
# sentence-transformers/distilbert-base-nli-mean-tokens
|
76 |
# BAAI/bge-large-en
|
77 |
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
107 |
# Initialize the LLM with the selected model
|
108 |
llm = HuggingFaceInferenceAPI(
|
109 |
model_name=selected_model_name,
|
110 |
+
contextWindow = 4096,
|
111 |
+
maxTokens = 4096,
|
112 |
+
temperature=0.7,
|
113 |
+
topP=0.95,
|
114 |
# token=os.getenv("TOKEN")
|
115 |
)
|
116 |
|