Sarath0x8f commited on
Commit
1c0fddd
·
verified ·
1 Parent(s): 9da2deb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -12,7 +12,8 @@ load_dotenv()
12
 
13
  # Initialize the LLM and parser
14
  llm = HuggingFaceInferenceAPI(
15
- model_name="meta-llama/Meta-Llama-3-8B-Instruct",
 
16
  token=os.getenv("TOKEN")
17
  )
18
 
@@ -45,7 +46,7 @@ def respond(message, history):
45
  # for chr in bot_message:
46
  # output += chr
47
  # yield output
48
- print(f"{datetime.now()}::message=>{str(bot_message)}")
49
  return str(bot_message)
50
  except Exception as e:
51
  if e == "'NoneType' object has no attribute 'as_query_engine'":
@@ -57,7 +58,7 @@ with gr.Blocks() as demo:
57
  with gr.Row():
58
  with gr.Column(scale=1):
59
  file_input = gr.File(file_count="single", type='filepath')
60
- with gr.Column():
61
  clear = gr.ClearButton()
62
  btn = gr.Button("Submit", variant='primary')
63
  output = gr.Text(label='Vector Index')
@@ -65,7 +66,7 @@ with gr.Blocks() as demo:
65
  gr.ChatInterface(fn=respond,
66
  chatbot=gr.Chatbot(height=500),
67
  textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
68
- examples=["summarize the document"]
69
  )
70
 
71
  # Action on button click to process file and load into index
 
12
 
13
  # Initialize the LLM and parser
14
  llm = HuggingFaceInferenceAPI(
15
+ # model_name="meta-llama/Meta-Llama-3-8B-Instruct",
16
+ model_name="mistralai/Mixtral-8x7B-Instruct-v0.1",
17
  token=os.getenv("TOKEN")
18
  )
19
 
 
46
  # for chr in bot_message:
47
  # output += chr
48
  # yield output
49
+ print(f"\n{datetime.now()}::message --> {str(bot_message)}\n")
50
  return str(bot_message)
51
  except Exception as e:
52
  if e == "'NoneType' object has no attribute 'as_query_engine'":
 
58
  with gr.Row():
59
  with gr.Column(scale=1):
60
  file_input = gr.File(file_count="single", type='filepath')
61
+ with gr.Row():
62
  clear = gr.ClearButton()
63
  btn = gr.Button("Submit", variant='primary')
64
  output = gr.Text(label='Vector Index')
 
66
  gr.ChatInterface(fn=respond,
67
  chatbot=gr.Chatbot(height=500),
68
  textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
69
+ # examples=["summarize the document"]
70
  )
71
 
72
  # Action on button click to process file and load into index