Ryukijano's picture
Update app.py
16c45c8 verified
raw
history blame
8.52 kB
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gradio as gr
import numpy as np
import random
import spaces
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0
from custom_pipeline import FluxWithCFGPipeline
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FluxWithCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
pipe.to("cuda")
pipe.load_lora_weights(
"hugovntr/flux-schnell-realism",
weight_name="schnell-realism_v2.3.safetensors",
adapter_name="better",
)
pipe.set_adapters(["better"], adapter_weights=[1.0])
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
pipe.unload_lora_weights()
# Correctly set memory format
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
# Conditionally enable xformers only for the transformer
if hasattr(pipe, "transformer") and torch.cuda.is_available():
try:
pipe.transformer.enable_xformers_memory_efficient_attention()
except Exception as e:
print(
"Warning: Could not enable xformers for the transformer due to the following error:"
)
print(e)
torch.cuda.empty_cache()
# Inference function
@spaces.GPU(duration=25)
def generate_image(
prompt,
seed=24,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
randomize_seed=False,
num_inference_steps=2,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(int(float(seed)))
start_time = time.time()
# Dynamically determine shapes based on input width/height
latents_shape = (1, 4, height // 8, width // 8)
prompt_embeds_shape = (
1,
pipe.transformer.text_encoder.config.max_position_embeddings,
pipe.transformer.text_encoder.config.hidden_size,
)
pooled_prompt_embeds_shape = (
1,
pipe.transformer.text_encoder.config.hidden_size,
)
# Only generate the last image in the sequence
img = pipe.generate_images(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
latents_shape=latents_shape,
prompt_embeds_shape=prompt_embeds_shape,
pooled_prompt_embeds_shape=pooled_prompt_embeds_shape
)
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
return img, seed, latency
# Example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of Steve Jobs",
"Create image of Modern house in minecraft style",
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
gr.Markdown(
"Generate stunning images in real-time with Modified Flux.Schnell pipeline."
)
gr.Markdown(
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>"
)
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(
label="Generated Image", show_label=False, interactive=False
)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("πŸ–ΌοΈ Generate Image")
enhanceBtn = gr.Button("πŸš€ Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(
label="Realtime Toggler",
info="If TRUE then uses more GPU but create image in realtime.",
value=False,
)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(
label="Randomize Seed", value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_WIDTH,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_HEIGHT,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=4,
step=1,
value=DEFAULT_INFERENCE_STEPS,
)
with gr.Row():
gr.Markdown("### 🌟 Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples="lazy",
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
queue=False
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled),
}
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn],
queue=False,
concurrency_limit=None,
)
def realtime_generation(*args):
if args[0]: # If realtime is enabled
img, seed, latency = generate_image(*args[1:])
return img, seed, latency
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[
realtime,
prompt,
seed,
width,
height,
randomize_seed,
num_inference_steps,
],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last",
queue=True,
concurrency_limit=None,
)
# Launch the app
demo.launch()