Spaces:
Sleeping
Sleeping
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import time | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from custom_pipeline import FluxWithCFGPipeline | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
DEFAULT_WIDTH = 1024 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_INFERENCE_STEPS = 1 | |
# Device and model setup | |
dtype = torch.float16 | |
pipe = FluxWithCFGPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
) | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
pipe.to("cuda") | |
pipe.load_lora_weights( | |
"hugovntr/flux-schnell-realism", | |
weight_name="schnell-realism_v2.3.safetensors", | |
adapter_name="better", | |
) | |
pipe.set_adapters(["better"], adapter_weights=[1.0]) | |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
pipe.unload_lora_weights() | |
# Correctly set memory format | |
pipe.transformer.to(memory_format=torch.channels_last) | |
pipe.vae.to(memory_format=torch.channels_last) | |
# Conditionally enable xformers only for the transformer | |
if hasattr(pipe, "transformer") and torch.cuda.is_available(): | |
try: | |
pipe.transformer.enable_xformers_memory_efficient_attention() | |
except Exception as e: | |
print( | |
"Warning: Could not enable xformers for the transformer due to the following error:" | |
) | |
print(e) | |
torch.cuda.empty_cache() | |
# Inference function | |
def generate_image( | |
prompt, | |
seed=24, | |
width=DEFAULT_WIDTH, | |
height=DEFAULT_HEIGHT, | |
randomize_seed=False, | |
num_inference_steps=2, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(int(float(seed))) | |
start_time = time.time() | |
# Dynamically determine shapes based on input width/height | |
latents_shape = (1, 4, height // 8, width // 8) | |
prompt_embeds_shape = ( | |
1, | |
pipe.transformer.text_encoder.config.max_position_embeddings, | |
pipe.transformer.text_encoder.config.hidden_size, | |
) | |
pooled_prompt_embeds_shape = ( | |
1, | |
pipe.transformer.text_encoder.config.hidden_size, | |
) | |
# Only generate the last image in the sequence | |
img = pipe.generate_images( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
latents_shape=latents_shape, | |
prompt_embeds_shape=prompt_embeds_shape, | |
pooled_prompt_embeds_shape=pooled_prompt_embeds_shape | |
) | |
latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
return img, seed, latency | |
# Example prompts | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cute white cat holding a sign that says hello world", | |
"an anime illustration of Steve Jobs", | |
"Create image of Modern house in minecraft style", | |
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
] | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="app-container"): | |
gr.Markdown("# π¨ Realtime FLUX Image Generator") | |
gr.Markdown( | |
"Generate stunning images in real-time with Modified Flux.Schnell pipeline." | |
) | |
gr.Markdown( | |
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2.5): | |
result = gr.Image( | |
label="Generated Image", show_label=False, interactive=False | |
) | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3, | |
show_label=False, | |
container=False, | |
) | |
generateBtn = gr.Button("πΌοΈ Generate Image") | |
enhanceBtn = gr.Button("π Enhance Image") | |
with gr.Column("Advanced Options"): | |
with gr.Row(): | |
realtime = gr.Checkbox( | |
label="Realtime Toggler", | |
info="If TRUE then uses more GPU but create image in realtime.", | |
value=False, | |
) | |
latency = gr.Text(label="Latency") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=42) | |
randomize_seed = gr.Checkbox( | |
label="Randomize Seed", value=True | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=DEFAULT_WIDTH, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=DEFAULT_HEIGHT, | |
) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=DEFAULT_INFERENCE_STEPS, | |
) | |
with gr.Row(): | |
gr.Markdown("### π Inspiration Gallery") | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
fn=generate_image, | |
inputs=[prompt], | |
outputs=[result, seed, latency], | |
cache_examples="lazy", | |
) | |
enhanceBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None, | |
) | |
generateBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
api_name="RealtimeFlux", | |
queue=False | |
) | |
def update_ui(realtime_enabled): | |
return { | |
prompt: gr.update(interactive=True), | |
generateBtn: gr.update(visible=not realtime_enabled), | |
} | |
realtime.change( | |
fn=update_ui, | |
inputs=[realtime], | |
outputs=[prompt, generateBtn], | |
queue=False, | |
concurrency_limit=None, | |
) | |
def realtime_generation(*args): | |
if args[0]: # If realtime is enabled | |
img, seed, latency = generate_image(*args[1:]) | |
return img, seed, latency | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None, | |
) | |
for component in [prompt, width, height, num_inference_steps]: | |
component.input( | |
fn=realtime_generation, | |
inputs=[ | |
realtime, | |
prompt, | |
seed, | |
width, | |
height, | |
randomize_seed, | |
num_inference_steps, | |
], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
trigger_mode="always_last", | |
queue=True, | |
concurrency_limit=None, | |
) | |
# Launch the app | |
demo.launch() |