Spaces:
Runtime error
Runtime error
| import torch | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import time | |
| from diffusers import DiffusionPipeline, AutoencoderTiny | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from custom_pipeline import FluxWithCFGPipeline | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| DEFAULT_WIDTH = 1024 | |
| DEFAULT_HEIGHT = 1024 | |
| DEFAULT_INFERENCE_STEPS = 1 | |
| # Device and model setup | |
| dtype = torch.float16 | |
| pipe = FluxWithCFGPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
| ) | |
| pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
| pipe.to("cuda") | |
| pipe.load_lora_weights( | |
| "hugovntr/flux-schnell-realism", | |
| weight_name="schnell-realism_v2.3.safetensors", | |
| adapter_name="better", | |
| ) | |
| pipe.set_adapters(["better"], adapter_weights=[1.0]) | |
| pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| # Correctly set memory format | |
| pipe.transformer.to(memory_format=torch.channels_last) | |
| pipe.vae.to(memory_format=torch.channels_last) | |
| # Conditionally enable xformers only for the transformer | |
| if hasattr(pipe, "transformer") and torch.cuda.is_available(): | |
| try: | |
| pipe.transformer.enable_xformers_memory_efficient_attention() | |
| except Exception as e: | |
| print( | |
| "Warning: Could not enable xformers for the transformer due to the following error:" | |
| ) | |
| print(e) | |
| torch.cuda.empty_cache() | |
| # Inference function | |
| def generate_image( | |
| prompt, | |
| seed=24, | |
| width=DEFAULT_WIDTH, | |
| height=DEFAULT_HEIGHT, | |
| randomize_seed=False, | |
| num_inference_steps=2, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(int(float(seed))) | |
| start_time = time.time() | |
| # Dynamically determine shapes based on input width/height | |
| latents_shape = (1, 4, height // 8, width // 8) | |
| prompt_embeds_shape = ( | |
| 1, | |
| pipe.transformer.text_encoder.config.max_position_embeddings, | |
| pipe.transformer.text_encoder.config.hidden_size, | |
| ) | |
| pooled_prompt_embeds_shape = ( | |
| 1, | |
| pipe.transformer.text_encoder.config.hidden_size, | |
| ) | |
| # Only generate the last image in the sequence | |
| img = pipe.generate_images( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| latents_shape=latents_shape, | |
| prompt_embeds_shape=prompt_embeds_shape, | |
| pooled_prompt_embeds_shape=pooled_prompt_embeds_shape | |
| ) | |
| latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
| return img, seed, latency | |
| # Example prompts | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cute white cat holding a sign that says hello world", | |
| "an anime illustration of Steve Jobs", | |
| "Create image of Modern house in minecraft style", | |
| "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
| "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
| "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
| ] | |
| # --- Gradio UI --- | |
| with gr.Blocks() as demo: | |
| with gr.Column(elem_id="app-container"): | |
| gr.Markdown("# π¨ Realtime FLUX Image Generator") | |
| gr.Markdown( | |
| "Generate stunning images in real-time with Modified Flux.Schnell pipeline." | |
| ) | |
| gr.Markdown( | |
| "<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=2.5): | |
| result = gr.Image( | |
| label="Generated Image", show_label=False, interactive=False | |
| ) | |
| with gr.Column(scale=1): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| placeholder="Describe the image you want to generate...", | |
| lines=3, | |
| show_label=False, | |
| container=False, | |
| ) | |
| generateBtn = gr.Button("πΌοΈ Generate Image") | |
| enhanceBtn = gr.Button("π Enhance Image") | |
| with gr.Column("Advanced Options"): | |
| with gr.Row(): | |
| realtime = gr.Checkbox( | |
| label="Realtime Toggler", | |
| info="If TRUE then uses more GPU but create image in realtime.", | |
| value=False, | |
| ) | |
| latency = gr.Text(label="Latency") | |
| with gr.Row(): | |
| seed = gr.Number(label="Seed", value=42) | |
| randomize_seed = gr.Checkbox( | |
| label="Randomize Seed", value=True | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=DEFAULT_WIDTH, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=DEFAULT_HEIGHT, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=DEFAULT_INFERENCE_STEPS, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("### π Inspiration Gallery") | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=examples, | |
| fn=generate_image, | |
| inputs=[prompt], | |
| outputs=[result, seed, latency], | |
| cache_examples="lazy", | |
| ) | |
| enhanceBtn.click( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| queue=False, | |
| concurrency_limit=None, | |
| ) | |
| generateBtn.click( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| api_name="RealtimeFlux", | |
| queue=False | |
| ) | |
| def update_ui(realtime_enabled): | |
| return { | |
| prompt: gr.update(interactive=True), | |
| generateBtn: gr.update(visible=not realtime_enabled), | |
| } | |
| realtime.change( | |
| fn=update_ui, | |
| inputs=[realtime], | |
| outputs=[prompt, generateBtn], | |
| queue=False, | |
| concurrency_limit=None, | |
| ) | |
| def realtime_generation(*args): | |
| if args[0]: # If realtime is enabled | |
| img, seed, latency = generate_image(*args[1:]) | |
| return img, seed, latency | |
| prompt.submit( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| queue=False, | |
| concurrency_limit=None, | |
| ) | |
| for component in [prompt, width, height, num_inference_steps]: | |
| component.input( | |
| fn=realtime_generation, | |
| inputs=[ | |
| realtime, | |
| prompt, | |
| seed, | |
| width, | |
| height, | |
| randomize_seed, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed, latency], | |
| show_progress="hidden", | |
| trigger_mode="always_last", | |
| queue=True, | |
| concurrency_limit=None, | |
| ) | |
| # Launch the app | |
| demo.launch() |