File size: 9,049 Bytes
56fd21a
ea4670b
56fd21a
 
 
 
 
ea4670b
56fd21a
 
ea4670b
 
 
c629e49
 
5193d26
8c4af83
 
c629e49
 
 
56fd21a
 
 
 
5193d26
8c4af83
56fd21a
c629e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4670b
56fd21a
5193d26
56fd21a
 
 
 
ea4670b
56fd21a
 
f289b0a
56fd21a
 
1fc15a8
5193d26
1fc15a8
ea4670b
 
 
 
 
 
bb5baba
ea4670b
 
 
 
 
 
 
 
 
 
2aa225e
ea4670b
 
56fd21a
ea4670b
 
56fd21a
5193d26
 
 
 
 
 
 
 
 
 
ea4670b
5193d26
 
ea4670b
5193d26
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4670b
5193d26
ea4670b
0e8391a
5193d26
 
 
 
 
ea4670b
5193d26
 
 
 
 
 
 
 
 
 
 
 
 
ea4670b
 
 
 
 
c629e49
 
 
5193d26
c629e49
 
 
 
 
 
 
 
 
 
 
ea4670b
c629e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193d26
c629e49
 
 
 
 
 
 
 
 
5193d26
ea4670b
5193d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd21a
c629e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd21a
5193d26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from api import router as analysis_router
from utils import ChatAnalyzer, setup_chat_analysis
import requests.exceptions
import aiohttp
from typing import Union

# Initialize environment variables
load_dotenv()

app = FastAPI(title="Status Law Assistant API")
app.include_router(analysis_router)

# Add custom exception handlers
@app.exception_handler(requests.exceptions.RequestException)
async def network_error_handler(request: Request, exc: requests.exceptions.RequestException):
    return JSONResponse(
        status_code=503,
        content={
            "error": "Network error occurred",
            "detail": str(exc),
            "type": "network_error"
        }
    )

@app.exception_handler(aiohttp.ClientError)
async def aiohttp_error_handler(request: Request, exc: aiohttp.ClientError):
    return JSONResponse(
        status_code=503,
        content={
            "error": "Network error occurred",
            "detail": str(exc),
            "type": "network_error"
        }
    )

# --------------- Model Initialization ---------------
def init_models():
    """Initialize AI models"""
    try:
        llm = ChatGroq(
            model_name="llama-3.3-70b-versatile",
            temperature=0.6,
            api_key=os.getenv("GROQ_API_KEY")
        )
        embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
        return llm, embeddings
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Model initialization failed: {str(e)}")

# --------------- Knowledge Base Management ---------------
VECTOR_STORE_PATH = "vector_store"
URLS = [
    "https://status.law",
    "https://status.law/about",
    "https://status.law/careers",  
    "https://status.law/tariffs-for-services-against-extradition-en",
    "https://status.law/challenging-sanctions",
    "https://status.law/law-firm-contact-legal-protection"
    "https://status.law/cross-border-banking-legal-issues", 
    "https://status.law/extradition-defense", 
    "https://status.law/international-prosecution-protection", 
    "https://status.law/interpol-red-notice-removal",  
    "https://status.law/practice-areas",  
    "https://status.law/reputation-protection",
    "https://status.law/faq"
]

def build_knowledge_base(_embeddings):
    """Build or update the knowledge base"""
    try:
        start_time = time.time()
        documents = []
        
        os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
        
        for url in URLS:
            try:
                loader = WebBaseLoader(url)
                docs = loader.load()
                documents.extend(docs)
            except Exception as e:
                print(f"Failed to load {url}: {str(e)}")
                continue

        if not documents:
            raise HTTPException(status_code=500, detail="No documents loaded")

        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=100
        )
        chunks = text_splitter.split_documents(documents)
        
        vector_store = FAISS.from_documents(chunks, _embeddings)
        vector_store.save_local(
            folder_path=VECTOR_STORE_PATH,
            index_name="index"
        )
        
        if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
            raise HTTPException(status_code=500, detail="FAISS index file not created")
            
        return vector_store
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Knowledge base creation failed: {str(e)}")

# --------------- API Models ---------------
class ChatRequest(BaseModel):
    message: str

class ChatResponse(BaseModel):
    response: str

# --------------- API Routes ---------------
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
    try:
        llm, embeddings = init_models()
        
        if not os.path.exists(VECTOR_STORE_PATH):
            vector_store = build_knowledge_base(embeddings)
        else:
            vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )

        # Add retry logic for network operations
        max_retries = 3
        retry_count = 0
        
        while retry_count < max_retries:
            try:
                context_docs = vector_store.similarity_search(request.message)
                context_text = "\n".join([d.page_content for d in context_docs])
                
                prompt_template = PromptTemplate.from_template('''
                    You are a helpful and polite legal assistant at Status Law.
                    You answer in the language in which the question was asked.
                    Answer the question based on the context provided.
                    
                    # ... остальной текст промпта ...

                    Context: {context}
                    Question: {question}
                    
                    Response Guidelines:
                    1. Answer in the user's language
                    2. Cite sources when possible
                    3. Offer contact options if unsure
                    ''')
                
                chain = prompt_template | llm | StrOutputParser()
                response = chain.invoke({
                    "context": context_text,
                    "question": request.message
                })
                
                log_interaction(request.message, response, context_text)
                return ChatResponse(response=response)
                
            except (requests.exceptions.RequestException, aiohttp.ClientError) as e:
                retry_count += 1
                if retry_count == max_retries:
                    raise HTTPException(
                        status_code=503,
                        detail={
                            "error": "Network error after maximum retries",
                            "detail": str(e),
                            "type": "network_error"
                        }
                    )
                await asyncio.sleep(1 * retry_count)  # Exponential backoff
                
    except Exception as e:
        if isinstance(e, (requests.exceptions.RequestException, aiohttp.ClientError)):
            raise HTTPException(
                status_code=503,
                detail={
                    "error": "Network error occurred",
                    "detail": str(e),
                    "type": "network_error"
                }
            )
        raise HTTPException(status_code=500, detail=str(e))

# --------------- Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str):
    try:
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "bot_response": bot_response,
            "context": context[:500],
            "kb_version": datetime.now().strftime("%Y%m%d-%H%M%S")
        }
        
        os.makedirs("chat_history", exist_ok=True)
        log_path = os.path.join("chat_history", "chat_logs.json")
        
        with open(log_path, "a", encoding="utf-8") as f:
            f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
            
    except Exception as e:
        print(f"Logging error: {str(e)}")
        print(traceback.format_exc())

# Add health check endpoint
@app.get("/health")
async def health_check():
    try:
        # Check if models can be initialized
        llm, embeddings = init_models()
        
        # Check if vector store is accessible
        if os.path.exists(VECTOR_STORE_PATH):
            vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )
        
        return {
            "status": "healthy",
            "vector_store": "available" if os.path.exists(VECTOR_STORE_PATH) else "not_found"
        }
        
    except Exception as e:
        return JSONResponse(
            status_code=503,
            content={
                "status": "unhealthy",
                "error": str(e)
            }
        )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)