old version
Browse files- .gitignore +0 -2
- README.md +8 -8
- app.py +220 -384
- colab_request.py +39 -0
- requirements.txt +11 -8
- run.sh +4 -1
.gitignore
CHANGED
|
@@ -4,5 +4,3 @@
|
|
| 4 |
venv
|
| 5 |
.streamlit/secrets.toml
|
| 6 |
|
| 7 |
-
stop_space.py
|
| 8 |
-
colab_request.py
|
|
|
|
| 4 |
venv
|
| 5 |
.streamlit/secrets.toml
|
| 6 |
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version: 1.42.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
short_description: It is a chat built with an AI model about www.Status.law
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# LS
|
| 14 |
|
| 15 |
-
It is a chat app built using
|
|
|
|
| 1 |
---
|
| 2 |
+
title: LS Chatbot Log
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
short_description: It is a chat built with an AI model about www.Status.law
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# LS Chatbot Log
|
| 14 |
|
| 15 |
+
It is a chat app built using Streamlit that allows users to interact with an AI model to communicate about www.Status.law
|
app.py
CHANGED
|
@@ -1,430 +1,266 @@
|
|
| 1 |
-
1/0
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import traceback
|
| 7 |
-
import warnings
|
| 8 |
-
import asyncio
|
| 9 |
-
import aiohttp
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
from typing import Optional, List, Dict
|
| 12 |
-
import logging
|
| 13 |
-
|
| 14 |
-
# Настройка логгера
|
| 15 |
-
logger = logging.getLogger(__name__)
|
| 16 |
-
logging.basicConfig(
|
| 17 |
-
level=logging.INFO,
|
| 18 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
from bs4 import BeautifulSoup
|
| 22 |
from dotenv import load_dotenv
|
| 23 |
-
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 24 |
-
from pydantic import BaseModel
|
| 25 |
from langchain_groq import ChatGroq
|
| 26 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 27 |
from langchain_community.vectorstores import FAISS
|
| 28 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
| 29 |
from langchain_core.prompts import PromptTemplate
|
| 30 |
from langchain_core.output_parsers import StrOutputParser
|
| 31 |
-
from
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# Ignore SSL warnings
|
| 36 |
-
warnings.filterwarnings('ignore')
|
| 37 |
|
| 38 |
# Initialize environment variables
|
| 39 |
load_dotenv()
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
hf_cache_dir = os.path.join(cache_dir, "huggingface")
|
| 54 |
-
if not os.path.exists(hf_cache_dir):
|
| 55 |
-
os.makedirs(hf_cache_dir, exist_ok=True)
|
| 56 |
-
os.chmod(hf_cache_dir, 0o777)
|
| 57 |
-
|
| 58 |
-
logger.info(f"Cache directories initialized: {cache_dir}, {hf_cache_dir}")
|
| 59 |
-
|
| 60 |
-
# Initialize FastAPI app
|
| 61 |
-
app = FastAPI(title="Status Law Assistant API")
|
| 62 |
-
|
| 63 |
-
# Константы
|
| 64 |
-
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 65 |
-
VECTOR_STORE_PATH = "vector_store"
|
| 66 |
-
KB_CONFIG_PATH = "vector_store/kb_config.json"
|
| 67 |
-
CACHE_DIR = "cache"
|
| 68 |
-
|
| 69 |
-
# Создаем необходимые директории
|
| 70 |
-
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
| 71 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 72 |
-
|
| 73 |
-
def get_kb_config():
|
| 74 |
-
if os.path.exists(KB_CONFIG_PATH):
|
| 75 |
-
with open(KB_CONFIG_PATH, 'r') as f:
|
| 76 |
-
return json.load(f)
|
| 77 |
-
return {
|
| 78 |
-
"version": 1,
|
| 79 |
-
"processed_urls": [],
|
| 80 |
-
"last_update": None
|
| 81 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# Models for request/response
|
| 89 |
-
class ChatRequest(BaseModel):
|
| 90 |
-
message: str
|
| 91 |
-
|
| 92 |
-
class ChatResponse(BaseModel):
|
| 93 |
-
response: str
|
| 94 |
-
context: Optional[str] = None
|
| 95 |
-
|
| 96 |
-
# Global variables
|
| 97 |
-
URLS = [
|
| 98 |
-
"https://status.law",
|
| 99 |
-
"https://status.law/about",
|
| 100 |
-
"https://status.law/careers",
|
| 101 |
-
"https://status.law/tariffs-for-services-against-extradition-en/",
|
| 102 |
-
"https://status.law/challenging-sanctions",
|
| 103 |
-
"https://status.law/law-firm-contact-legal-protection",
|
| 104 |
-
"https://status.law/cross-border-banking-legal-issues",
|
| 105 |
-
"https://status.law/extradition-defense",
|
| 106 |
-
"https://status.law/international-prosecution-protection",
|
| 107 |
-
"https://status.law/interpol-red-notice-removal",
|
| 108 |
-
"https://status.law/practice-areas",
|
| 109 |
-
"https://status.law/reputation-protection",
|
| 110 |
-
"https://status.law/faq"
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
# Enhanced logging
|
| 114 |
-
class CustomCallbackHandler(ConsoleCallbackHandler):
|
| 115 |
-
def on_chain_end(self, run):
|
| 116 |
log_entry = {
|
| 117 |
"timestamp": datetime.now().isoformat(),
|
| 118 |
-
"
|
| 119 |
-
"
|
| 120 |
-
"
|
| 121 |
-
"
|
| 122 |
-
"metadata": run.metadata
|
| 123 |
}
|
| 124 |
|
| 125 |
os.makedirs("chat_history", exist_ok=True)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
|
|
|
|
|
|
| 130 |
def init_models():
|
| 131 |
-
"""
|
| 132 |
try:
|
| 133 |
-
callback_handler = CustomCallbackHandler()
|
| 134 |
-
callback_manager = CallbackManager([callback_handler])
|
| 135 |
-
|
| 136 |
-
# Инициализация LLM
|
| 137 |
llm = ChatGroq(
|
| 138 |
model_name="llama-3.3-70b-versatile",
|
| 139 |
temperature=0.6,
|
| 140 |
-
api_key=os.getenv("GROQ_API_KEY")
|
| 141 |
-
callback_manager=callback_manager
|
| 142 |
)
|
| 143 |
-
|
| 144 |
-
# Инициализация embeddings с явным указанием кэша
|
| 145 |
embeddings = HuggingFaceEmbeddings(
|
| 146 |
-
model_name=
|
| 147 |
-
cache_folder=hf_cache_dir
|
| 148 |
)
|
| 149 |
-
|
| 150 |
-
logger.info("Models initialized successfully")
|
| 151 |
return llm, embeddings
|
| 152 |
-
|
| 153 |
-
except Exception as e:
|
| 154 |
-
logger.error(f"Model initialization error: {str(e)}")
|
| 155 |
-
logger.error(traceback.format_exc())
|
| 156 |
-
raise Exception(f"Model initialization failed: {str(e)}")
|
| 157 |
-
|
| 158 |
-
async def fetch_url(session, url):
|
| 159 |
-
cache_file = os.path.join(CACHE_DIR, f"{url.replace('/', '_').replace(':', '_')}.html")
|
| 160 |
-
|
| 161 |
-
# Проверяем кэш
|
| 162 |
-
if os.path.exists(cache_file):
|
| 163 |
-
with open(cache_file, 'r', encoding='utf-8') as f:
|
| 164 |
-
return url, f.read()
|
| 165 |
-
|
| 166 |
-
try:
|
| 167 |
-
async with session.get(url, ssl=False, timeout=30) as response:
|
| 168 |
-
if response.status == 200:
|
| 169 |
-
content = await response.text()
|
| 170 |
-
# Сохраняем в кэш
|
| 171 |
-
with open(cache_file, 'w', encoding='utf-8') as f:
|
| 172 |
-
f.write(content)
|
| 173 |
-
return url, content
|
| 174 |
-
else:
|
| 175 |
-
logger.warning(f"Failed to load {url}, status code: {response.status}")
|
| 176 |
-
return url, None
|
| 177 |
except Exception as e:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
if not text.strip():
|
| 200 |
-
return None
|
| 201 |
-
|
| 202 |
-
return Document(page_content=text, metadata={"source": url})
|
| 203 |
-
|
| 204 |
-
async def load_all_urls(urls_to_process):
|
| 205 |
-
documents = []
|
| 206 |
-
|
| 207 |
-
async with aiohttp.ClientSession() as session:
|
| 208 |
-
tasks = [fetch_url(session, url) for url in urls_to_process]
|
| 209 |
-
results = await asyncio.gather(*tasks)
|
| 210 |
-
|
| 211 |
-
for url, content in results:
|
| 212 |
-
if content:
|
| 213 |
-
doc = process_html_content(url, content)
|
| 214 |
-
if doc:
|
| 215 |
-
documents.append(doc)
|
| 216 |
-
logger.info(f"Successfully processed content from {url}")
|
| 217 |
-
else:
|
| 218 |
-
logger.warning(f"No useful content extracted from {url}")
|
| 219 |
-
else:
|
| 220 |
-
logger.warning(f"Failed to load content from {url}")
|
| 221 |
-
|
| 222 |
-
return documents
|
| 223 |
|
| 224 |
-
|
| 225 |
-
"""
|
| 226 |
-
Асинхронное построение базы знаний.
|
| 227 |
-
Параметр force_rebuild позволяет принудительно обновить все URL.
|
| 228 |
-
"""
|
| 229 |
try:
|
| 230 |
-
|
| 231 |
-
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
kb_config["processed_urls"] = []
|
| 237 |
-
logger.info("Forcing rebuild of entire knowledge base")
|
| 238 |
-
else:
|
| 239 |
-
urls_to_process = [url for url in URLS if url not in kb_config["processed_urls"]]
|
| 240 |
-
|
| 241 |
-
if not urls_to_process:
|
| 242 |
-
logger.info("No new URLs to process")
|
| 243 |
-
return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
# Если есть существующая база знаний и мы не выполняем полное обновление, добавляем к ней
|
| 267 |
-
if not force_rebuild and os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
| 268 |
-
logger.info("Loading existing vector store...")
|
| 269 |
-
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 270 |
-
logger.info("Adding new documents to existing vector store...")
|
| 271 |
-
vector_store.add_documents(chunks)
|
| 272 |
-
else:
|
| 273 |
-
logger.info("Creating new vector store...")
|
| 274 |
-
vector_store = FAISS.from_documents(chunks, embeddings)
|
| 275 |
-
|
| 276 |
-
logger.info("Saving vector store...")
|
| 277 |
-
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
|
| 278 |
-
|
| 279 |
-
# Обновляем конфигурацию
|
| 280 |
-
for url in urls_to_process:
|
| 281 |
-
if url not in kb_config["processed_urls"]:
|
| 282 |
-
kb_config["processed_urls"].append(url)
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
return vector_store
|
| 290 |
-
|
| 291 |
-
except Exception as e:
|
| 292 |
-
logger.error(f"Error in build_knowledge_base: {str(e)}")
|
| 293 |
-
traceback.print_exc()
|
| 294 |
-
raise Exception(f"Knowledge base creation failed: {str(e)}")
|
| 295 |
-
|
| 296 |
-
# Initialize models and knowledge base on startup
|
| 297 |
-
llm, embeddings = init_models()
|
| 298 |
-
vector_store = None
|
| 299 |
-
|
| 300 |
-
@app.on_event("startup")
|
| 301 |
-
async def startup_event():
|
| 302 |
-
global vector_store
|
| 303 |
-
try:
|
| 304 |
-
# Проверяем существование базы знаний
|
| 305 |
-
if os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
| 306 |
-
vector_store = FAISS.load_local(
|
| 307 |
-
VECTOR_STORE_PATH,
|
| 308 |
-
embeddings,
|
| 309 |
-
allow_dangerous_deserialization=True
|
| 310 |
)
|
| 311 |
-
logger.info("Existing knowledge base loaded successfully")
|
| 312 |
-
else:
|
| 313 |
-
logger.info("No existing knowledge base found. Use /rebuild-kb endpoint to create one")
|
| 314 |
-
except Exception as e:
|
| 315 |
-
logger.error(f"Error during startup: {str(e)}")
|
| 316 |
-
vector_store = None
|
| 317 |
-
|
| 318 |
-
# API endpoints
|
| 319 |
-
@app.post("/chat", response_model=ChatResponse)
|
| 320 |
-
async def chat_endpoint(request: ChatRequest):
|
| 321 |
-
global vector_store
|
| 322 |
-
|
| 323 |
-
# Проверяем, инициализирована ли база знаний
|
| 324 |
-
if vector_store is None:
|
| 325 |
-
raise HTTPException(
|
| 326 |
-
status_code=503,
|
| 327 |
-
detail="Knowledge base not initialized. Please use /rebuild-kb endpoint first."
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
try:
|
| 331 |
-
# Retrieve context
|
| 332 |
-
context_docs = vector_store.similarity_search(request.message, k=3) # Ограничиваем количество документов
|
| 333 |
-
context_text = "\n".join([d.page_content for d in context_docs])
|
| 334 |
-
|
| 335 |
-
# Generate response
|
| 336 |
-
prompt_template = PromptTemplate.from_template('''
|
| 337 |
-
You are a helpful and polite legal assistant at Status Law.
|
| 338 |
-
You answer in the language in which the question was asked.
|
| 339 |
-
Answer the question based on the context provided.
|
| 340 |
-
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
|
| 341 |
-
- For all users: +32465594521 (landline phone).
|
| 342 |
-
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
|
| 343 |
-
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
| 344 |
-
|
| 345 |
-
Context: {context}
|
| 346 |
-
Question: {question}
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
except Exception as e:
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
vector_store = await build_knowledge_base_async(embeddings, force_rebuild=force)
|
| 390 |
-
logger.info("Knowledge base rebuild completed successfully")
|
| 391 |
-
except Exception as e:
|
| 392 |
-
logger.error(f"Knowledge base rebuild failed: {str(e)}")
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
kb_config = get_kb_config()
|
| 400 |
-
return {
|
| 401 |
-
"initialized": vector_store is not None,
|
| 402 |
-
"version": kb_config["version"],
|
| 403 |
-
"total_urls": len(URLS),
|
| 404 |
-
"processed_urls": len(kb_config["processed_urls"]),
|
| 405 |
-
"pending_urls": len([url for url in URLS if url not in kb_config["processed_urls"]]),
|
| 406 |
-
"last_update": kb_config["last_update"]
|
| 407 |
-
}
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
if __name__ == "__main__":
|
| 429 |
-
|
| 430 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import time
|
| 3 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 5 |
from langchain_groq import ChatGroq
|
| 6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
from langchain_community.vectorstores import FAISS
|
| 8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 9 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 10 |
from langchain_core.prompts import PromptTemplate
|
| 11 |
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import json
|
| 14 |
+
import traceback
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Initialize environment variables
|
| 17 |
load_dotenv()
|
| 18 |
|
| 19 |
+
# --------------- Session State Initialization ---------------
|
| 20 |
+
def init_session_state():
|
| 21 |
+
"""Initialize all required session state variables"""
|
| 22 |
+
defaults = {
|
| 23 |
+
'kb_info': {
|
| 24 |
+
'build_time': None,
|
| 25 |
+
'size': None,
|
| 26 |
+
'version': '1.1'
|
| 27 |
+
},
|
| 28 |
+
'messages': [],
|
| 29 |
+
'vector_store': None,
|
| 30 |
+
'models_initialized': False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
}
|
| 32 |
+
|
| 33 |
+
for key, value in defaults.items():
|
| 34 |
+
if key not in st.session_state:
|
| 35 |
+
st.session_state[key] = value
|
| 36 |
|
| 37 |
+
# --------------- Enhanced Logging ---------------
|
| 38 |
+
def log_interaction(user_input: str, bot_response: str, context: str):
|
| 39 |
+
"""Log interactions with error handling"""
|
| 40 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
log_entry = {
|
| 42 |
"timestamp": datetime.now().isoformat(),
|
| 43 |
+
"user_input": user_input,
|
| 44 |
+
"bot_response": bot_response,
|
| 45 |
+
"context": context[:500], # Store first 500 chars of context
|
| 46 |
+
"kb_version": st.session_state.kb_info['version']
|
|
|
|
| 47 |
}
|
| 48 |
|
| 49 |
os.makedirs("chat_history", exist_ok=True)
|
| 50 |
+
log_path = os.path.join("chat_history", "chat_logs.json")
|
| 51 |
+
|
| 52 |
+
with open(log_path, "a", encoding="utf-8") as f:
|
| 53 |
+
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
| 54 |
+
|
| 55 |
+
except Exception as e:
|
| 56 |
+
st.error(f"Logging error: {str(e)}")
|
| 57 |
+
print(traceback.format_exc())
|
| 58 |
|
| 59 |
+
# --------------- Model Initialization ---------------
|
| 60 |
+
@st.cache_resource
|
| 61 |
def init_models():
|
| 62 |
+
"""Initialize AI models with caching"""
|
| 63 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
llm = ChatGroq(
|
| 65 |
model_name="llama-3.3-70b-versatile",
|
| 66 |
temperature=0.6,
|
| 67 |
+
api_key=os.getenv("GROQ_API_KEY")
|
|
|
|
| 68 |
)
|
|
|
|
|
|
|
| 69 |
embeddings = HuggingFaceEmbeddings(
|
| 70 |
+
model_name="intfloat/multilingual-e5-large-instruct"
|
|
|
|
| 71 |
)
|
| 72 |
+
st.session_state.models_initialized = True
|
|
|
|
| 73 |
return llm, embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
+
st.error(f"Model initialization failed: {str(e)}")
|
| 76 |
+
st.stop()
|
| 77 |
|
| 78 |
+
# --------------- Knowledge Base Management ---------------
|
| 79 |
+
VECTOR_STORE_PATH = "vector_store"
|
| 80 |
+
URLS = [
|
| 81 |
+
"https://status.law",
|
| 82 |
+
"https://status.law/about",
|
| 83 |
+
"https://status.law/careers",
|
| 84 |
+
"https://status.law/tariffs-for-services-of-protection-against-extradition",
|
| 85 |
+
"https://status.law/challenging-sanctions",
|
| 86 |
+
"https://status.law/law-firm-contact-legal-protection"
|
| 87 |
+
"https://status.law/cross-border-banking-legal-issues",
|
| 88 |
+
"https://status.law/extradition-defense",
|
| 89 |
+
"https://status.law/international-prosecution-protection",
|
| 90 |
+
"https://status.law/interpol-red-notice-removal",
|
| 91 |
+
"https://status.law/practice-areas",
|
| 92 |
+
"https://status.law/reputation-protection",
|
| 93 |
+
"https://status.law/faq"
|
| 94 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
def build_knowledge_base(_embeddings):
|
| 97 |
+
"""Build or update the knowledge base"""
|
|
|
|
|
|
|
|
|
|
| 98 |
try:
|
| 99 |
+
start_time = time.time()
|
| 100 |
+
documents = []
|
| 101 |
|
| 102 |
+
with st.status("Building knowledge base..."):
|
| 103 |
+
# Создаем папку заранее
|
| 104 |
+
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Загрузка документов
|
| 107 |
+
for url in URLS:
|
| 108 |
+
try:
|
| 109 |
+
loader = WebBaseLoader(url)
|
| 110 |
+
docs = loader.load()
|
| 111 |
+
documents.extend(docs)
|
| 112 |
+
st.write(f"✓ Loaded {url}")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"Failed to load {url}: {str(e)}")
|
| 115 |
+
continue # Продолжаем при ошибках загрузки
|
| 116 |
+
|
| 117 |
+
if not documents:
|
| 118 |
+
st.error("No documents loaded!")
|
| 119 |
+
return None
|
| 120 |
+
|
| 121 |
+
# Разделение на чанки
|
| 122 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 123 |
+
chunk_size=500,
|
| 124 |
+
chunk_overlap=100
|
| 125 |
+
)
|
| 126 |
+
chunks = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Явное сохранение
|
| 129 |
+
vector_store = FAISS.from_documents(chunks, _embeddings)
|
| 130 |
+
vector_store.save_local(
|
| 131 |
+
folder_path=VECTOR_STORE_PATH,
|
| 132 |
+
index_name="index"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Проверка создания файлов
|
| 136 |
+
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
| 137 |
+
raise RuntimeError("FAISS index file not created!")
|
| 138 |
+
|
| 139 |
+
# Обновление информации
|
| 140 |
+
st.session_state.kb_info.update({
|
| 141 |
+
'build_time': time.time() - start_time,
|
| 142 |
+
'size': sum(
|
| 143 |
+
os.path.getsize(os.path.join(VECTOR_STORE_PATH, f))
|
| 144 |
+
for f in ["index.faiss", "index.pkl"]
|
| 145 |
+
) / (1024 ** 2),
|
| 146 |
+
'version': datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 147 |
+
})
|
| 148 |
+
|
| 149 |
+
st.success("Knowledge base successfully created!")
|
| 150 |
+
return vector_store
|
| 151 |
+
|
| 152 |
except Exception as e:
|
| 153 |
+
st.error(f"Knowledge base creation failed: {str(e)}")
|
| 154 |
+
# Отладочная информация
|
| 155 |
+
st.write("Debug info:")
|
| 156 |
+
st.write(f"Documents loaded: {len(documents)}")
|
| 157 |
+
st.write(f"Chunks created: {len(chunks) if 'chunks' in locals() else 0}")
|
| 158 |
+
st.write(f"Vector store path exists: {os.path.exists(VECTOR_STORE_PATH)}")
|
| 159 |
+
st.stop()
|
| 160 |
+
# --------------- Main Application ---------------
|
| 161 |
+
def main():
|
| 162 |
+
# Initialize session state first
|
| 163 |
+
init_session_state()
|
| 164 |
|
| 165 |
+
# Page configuration
|
| 166 |
+
st.set_page_config(
|
| 167 |
+
page_title="Status Law Assistant",
|
| 168 |
+
page_icon="⚖️",
|
| 169 |
+
layout="wide"
|
| 170 |
+
)
|
| 171 |
|
| 172 |
+
# Display header
|
| 173 |
+
st.markdown('''
|
| 174 |
+
<h1 style="border-bottom: 2px solid #444; padding-bottom: 10px;">
|
| 175 |
+
⚖️ <a href="https://status.law/" style="text-decoration: none; color: #2B5876;">Status.Law</a> Legal Assistant
|
| 176 |
+
</h1>
|
| 177 |
+
''', unsafe_allow_html=True)
|
| 178 |
+
|
| 179 |
+
# Initialize models
|
| 180 |
+
llm, embeddings = init_models()
|
| 181 |
+
|
| 182 |
+
# Knowledge base initialization
|
| 183 |
+
if not os.path.exists(VECTOR_STORE_PATH):
|
| 184 |
+
st.warning("Knowledge base not initialized")
|
| 185 |
+
if st.button("Create Knowledge Base"):
|
| 186 |
+
st.session_state.vector_store = build_knowledge_base(embeddings)
|
| 187 |
+
st.rerun()
|
| 188 |
+
return
|
| 189 |
+
|
| 190 |
+
if not st.session_state.vector_store:
|
| 191 |
+
try:
|
| 192 |
+
st.session_state.vector_store = FAISS.load_local(
|
| 193 |
+
VECTOR_STORE_PATH,
|
| 194 |
+
embeddings,
|
| 195 |
+
allow_dangerous_deserialization=True
|
| 196 |
+
)
|
| 197 |
+
except Exception as e:
|
| 198 |
+
st.error(f"Failed to load knowledge base: {str(e)}")
|
| 199 |
+
st.stop()
|
| 200 |
|
| 201 |
+
# Chat interface
|
| 202 |
+
for message in st.session_state.messages:
|
| 203 |
+
with st.chat_message(message["role"]):
|
| 204 |
+
st.markdown(message["content"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
if prompt := st.chat_input("Ask your legal question"):
|
| 207 |
+
# Add user message to chat history
|
| 208 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 209 |
+
with st.chat_message("user"):
|
| 210 |
+
st.markdown(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
# Generate response
|
| 213 |
+
with st.chat_message("assistant"):
|
| 214 |
+
try:
|
| 215 |
+
# Retrieve context
|
| 216 |
+
context_docs = st.session_state.vector_store.similarity_search(prompt)
|
| 217 |
+
context_text = "\n".join([d.page_content for d in context_docs])
|
| 218 |
+
|
| 219 |
+
# Generate response
|
| 220 |
+
prompt_template = PromptTemplate.from_template('''
|
| 221 |
+
You are a helpful and polite legal assistant at Status Law.
|
| 222 |
+
You answer in the language in which the question was asked.
|
| 223 |
+
Answer the question based on the context provided.
|
| 224 |
+
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
|
| 225 |
+
- For all users: +32465594521 (landline phone).
|
| 226 |
+
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
|
| 227 |
+
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
| 228 |
+
If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.
|
| 229 |
+
|
| 230 |
+
Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.
|
| 231 |
+
|
| 232 |
+
Also, offer free consultations if they are available and suitable for the user's request.
|
| 233 |
+
Answer professionally but in a friendly manner.
|
| 234 |
+
|
| 235 |
+
Example:
|
| 236 |
+
Q: How can I challenge the sanctions?
|
| 237 |
+
A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
| 238 |
+
|
| 239 |
+
Context: {context}
|
| 240 |
+
Question: {question}
|
| 241 |
+
|
| 242 |
+
Response Guidelines:
|
| 243 |
+
1. Answer in the user's language
|
| 244 |
+
2. Cite sources when possible
|
| 245 |
+
3. Offer contact options if unsure
|
| 246 |
+
''')
|
| 247 |
+
|
| 248 |
+
chain = prompt_template | llm | StrOutputParser()
|
| 249 |
+
response = chain.invoke({
|
| 250 |
+
"context": context_text,
|
| 251 |
+
"question": prompt
|
| 252 |
+
})
|
| 253 |
+
|
| 254 |
+
# Display and log
|
| 255 |
+
st.markdown(response)
|
| 256 |
+
log_interaction(prompt, response, context_text)
|
| 257 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 258 |
+
|
| 259 |
+
except Exception as e:
|
| 260 |
+
error_msg = f"Error generating response: {str(e)}"
|
| 261 |
+
st.error(error_msg)
|
| 262 |
+
log_interaction(prompt, error_msg, "")
|
| 263 |
+
print(traceback.format_exc())
|
| 264 |
|
| 265 |
if __name__ == "__main__":
|
| 266 |
+
main()
|
|
|
colab_request.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
base_url = "https://rulga-doc-chat.hf.space"
|
| 5 |
+
max_retries = 10 # Максимальное количество попыток
|
| 6 |
+
retry_delay = 30 # Задержка между попытками в секундах
|
| 7 |
+
|
| 8 |
+
def wait_for_service():
|
| 9 |
+
print("Waiting for the service to start...")
|
| 10 |
+
for attempt in range(max_retries):
|
| 11 |
+
try:
|
| 12 |
+
response = requests.get(base_url)
|
| 13 |
+
if response.status_code == 200 and "Could not parse JSON" not in response.text:
|
| 14 |
+
print(f"Service is ready after {attempt + 1} attempts!")
|
| 15 |
+
return True
|
| 16 |
+
except requests.exceptions.RequestException:
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
print(f"Attempt {attempt + 1}/{max_retries}. Service is still starting. Waiting {retry_delay} seconds...")
|
| 20 |
+
time.sleep(retry_delay)
|
| 21 |
+
|
| 22 |
+
return False
|
| 23 |
+
|
| 24 |
+
if wait_for_service():
|
| 25 |
+
# Запуск создания базы знаний
|
| 26 |
+
print("\nSending rebuild request...")
|
| 27 |
+
rebuild_url = f"{base_url}/rebuild-kb"
|
| 28 |
+
response = requests.post(rebuild_url, params={"force": True})
|
| 29 |
+
print(f"Status code: {response.status_code}")
|
| 30 |
+
print(f"Response: {response.text}")
|
| 31 |
+
|
| 32 |
+
# Проверка статуса
|
| 33 |
+
print("\nChecking status...")
|
| 34 |
+
status_url = f"{base_url}/kb-status"
|
| 35 |
+
status = requests.get(status_url)
|
| 36 |
+
print(f"Status code: {status.status_code}")
|
| 37 |
+
print(f"Status: {status.text}")
|
| 38 |
+
else:
|
| 39 |
+
print("Service failed to start after maximum retries")
|
requirements.txt
CHANGED
|
@@ -1,20 +1,23 @@
|
|
| 1 |
-
|
| 2 |
langchain-community
|
| 3 |
langchain-core
|
| 4 |
langchain-huggingface
|
| 5 |
langchain-groq
|
| 6 |
-
sentence-transformers
|
| 7 |
python-dotenv
|
|
|
|
| 8 |
faiss-cpu
|
| 9 |
requests
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# Для API и логирования
|
| 13 |
fastapi
|
| 14 |
uvicorn[standard]
|
| 15 |
pydantic
|
|
|
|
| 16 |
pandas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
# Для LangChain логирования
|
| 19 |
-
langgraph
|
| 20 |
-
langchain-core[tracing]
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
langchain-community
|
| 3 |
langchain-core
|
| 4 |
langchain-huggingface
|
| 5 |
langchain-groq
|
|
|
|
| 6 |
python-dotenv
|
| 7 |
+
beautifulsoup4
|
| 8 |
faiss-cpu
|
| 9 |
requests
|
| 10 |
+
langgraph
|
| 11 |
+
langchain-anthropic
|
|
|
|
| 12 |
fastapi
|
| 13 |
uvicorn[standard]
|
| 14 |
pydantic
|
| 15 |
+
python-multipart
|
| 16 |
pandas
|
| 17 |
+
langchain
|
| 18 |
+
plotly
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
|
|
|
|
|
|
|
|
|
run.sh
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Запуск Streamlit и FastAPI параллельно
|
| 4 |
+
streamlit run app.py & # Запуск чат-бота
|
| 5 |
+
uvicorn api.main:app --reload # Запуск API для анализа логов
|