Refactor run script and update requirements for API integration
Browse files- app.py +155 -215
- requirements.txt +6 -11
- run.sh +1 -4
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
-
import streamlit as st
|
4 |
from dotenv import load_dotenv
|
|
|
|
|
5 |
from langchain_groq import ChatGroq
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain_community.vectorstores import FAISS
|
@@ -12,255 +13,194 @@ from langchain_core.output_parsers import StrOutputParser
|
|
12 |
from datetime import datetime
|
13 |
import json
|
14 |
import traceback
|
|
|
|
|
|
|
15 |
|
16 |
# Initialize environment variables
|
17 |
load_dotenv()
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
"""Initialize all required session state variables"""
|
22 |
-
defaults = {
|
23 |
-
'kb_info': {
|
24 |
-
'build_time': None,
|
25 |
-
'size': None,
|
26 |
-
'version': '1.1'
|
27 |
-
},
|
28 |
-
'messages': [],
|
29 |
-
'vector_store': None,
|
30 |
-
'models_initialized': False
|
31 |
-
}
|
32 |
-
|
33 |
-
for key, value in defaults.items():
|
34 |
-
if key not in st.session_state:
|
35 |
-
st.session_state[key] = value
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
log_entry = {
|
42 |
"timestamp": datetime.now().isoformat(),
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
-
"
|
|
|
47 |
}
|
48 |
|
49 |
os.makedirs("chat_history", exist_ok=True)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
st.error(f"Logging error: {str(e)}")
|
57 |
-
print(traceback.format_exc())
|
58 |
|
59 |
-
#
|
60 |
-
@st.cache_resource
|
61 |
def init_models():
|
62 |
-
"""Initialize AI models with caching"""
|
63 |
try:
|
|
|
|
|
|
|
64 |
llm = ChatGroq(
|
65 |
model_name="llama-3.3-70b-versatile",
|
66 |
temperature=0.6,
|
67 |
-
api_key=os.getenv("GROQ_API_KEY")
|
|
|
68 |
)
|
69 |
embeddings = HuggingFaceEmbeddings(
|
70 |
model_name="intfloat/multilingual-e5-large-instruct"
|
71 |
)
|
72 |
-
st.session_state.models_initialized = True
|
73 |
return llm, embeddings
|
74 |
except Exception as e:
|
75 |
-
|
76 |
-
st.stop()
|
77 |
-
|
78 |
-
# --------------- Knowledge Base Management ---------------
|
79 |
-
VECTOR_STORE_PATH = "vector_store"
|
80 |
-
URLS = [
|
81 |
-
"https://status.law",
|
82 |
-
"https://status.law/about",
|
83 |
-
"https://status.law/careers",
|
84 |
-
"https://status.law/tariffs-for-services-of-protection-against-extradition",
|
85 |
-
"https://status.law/challenging-sanctions",
|
86 |
-
"https://status.law/law-firm-contact-legal-protection"
|
87 |
-
"https://status.law/cross-border-banking-legal-issues",
|
88 |
-
"https://status.law/extradition-defense",
|
89 |
-
"https://status.law/international-prosecution-protection",
|
90 |
-
"https://status.law/interpol-red-notice-removal",
|
91 |
-
"https://status.law/practice-areas",
|
92 |
-
"https://status.law/reputation-protection",
|
93 |
-
"https://status.law/faq"
|
94 |
-
]
|
95 |
|
96 |
-
|
97 |
-
|
98 |
try:
|
99 |
-
start_time = time.time()
|
100 |
documents = []
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
docs = loader.load()
|
111 |
-
documents.extend(docs)
|
112 |
-
st.write(f"✓ Loaded {url}")
|
113 |
-
except Exception as e:
|
114 |
-
st.error(f"Failed to load {url}: {str(e)}")
|
115 |
-
continue # Продолжаем при ошибках загрузки
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
return None
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
folder_path=VECTOR_STORE_PATH,
|
132 |
-
index_name="index"
|
133 |
-
)
|
134 |
-
|
135 |
-
# Проверка создания файлов
|
136 |
-
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
137 |
-
raise RuntimeError("FAISS index file not created!")
|
138 |
-
|
139 |
-
# Обновление информации
|
140 |
-
st.session_state.kb_info.update({
|
141 |
-
'build_time': time.time() - start_time,
|
142 |
-
'size': sum(
|
143 |
-
os.path.getsize(os.path.join(VECTOR_STORE_PATH, f))
|
144 |
-
for f in ["index.faiss", "index.pkl"]
|
145 |
-
) / (1024 ** 2),
|
146 |
-
'version': datetime.now().strftime("%Y%m%d-%H%M%S")
|
147 |
-
})
|
148 |
-
|
149 |
-
st.success("Knowledge base successfully created!")
|
150 |
-
return vector_store
|
151 |
-
|
152 |
except Exception as e:
|
153 |
-
|
154 |
-
# Отладочная информация
|
155 |
-
st.write("Debug info:")
|
156 |
-
st.write(f"Documents loaded: {len(documents)}")
|
157 |
-
st.write(f"Chunks created: {len(chunks) if 'chunks' in locals() else 0}")
|
158 |
-
st.write(f"Vector store path exists: {os.path.exists(VECTOR_STORE_PATH)}")
|
159 |
-
st.stop()
|
160 |
-
# --------------- Main Application ---------------
|
161 |
-
def main():
|
162 |
-
# Initialize session state first
|
163 |
-
init_session_state()
|
164 |
-
|
165 |
-
# Page configuration
|
166 |
-
st.set_page_config(
|
167 |
-
page_title="Status Law Assistant",
|
168 |
-
page_icon="⚖️",
|
169 |
-
layout="wide"
|
170 |
-
)
|
171 |
-
|
172 |
-
# Display header
|
173 |
-
st.markdown('''
|
174 |
-
<h1 style="border-bottom: 2px solid #444; padding-bottom: 10px;">
|
175 |
-
⚖️ <a href="https://status.law/" style="text-decoration: none; color: #2B5876;">Status.Law</a> Legal Assistant
|
176 |
-
</h1>
|
177 |
-
''', unsafe_allow_html=True)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
# Knowledge base initialization
|
183 |
-
if not os.path.exists(VECTOR_STORE_PATH):
|
184 |
-
st.warning("Knowledge base not initialized")
|
185 |
-
if st.button("Create Knowledge Base"):
|
186 |
-
st.session_state.vector_store = build_knowledge_base(embeddings)
|
187 |
-
st.rerun()
|
188 |
-
return
|
189 |
-
|
190 |
-
if not st.session_state.vector_store:
|
191 |
-
try:
|
192 |
-
st.session_state.vector_store = FAISS.load_local(
|
193 |
-
VECTOR_STORE_PATH,
|
194 |
-
embeddings,
|
195 |
-
allow_dangerous_deserialization=True
|
196 |
-
)
|
197 |
-
except Exception as e:
|
198 |
-
st.error(f"Failed to load knowledge base: {str(e)}")
|
199 |
-
st.stop()
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
209 |
-
with st.chat_message("user"):
|
210 |
-
st.markdown(prompt)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
# Generate response
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
log_interaction(prompt, response, context_text)
|
257 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
258 |
-
|
259 |
-
except Exception as e:
|
260 |
-
error_msg = f"Error generating response: {str(e)}"
|
261 |
-
st.error(error_msg)
|
262 |
-
log_interaction(prompt, error_msg, "")
|
263 |
-
print(traceback.format_exc())
|
264 |
|
265 |
if __name__ == "__main__":
|
266 |
-
|
|
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
+
from pydantic import BaseModel
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
from langchain_community.vectorstores import FAISS
|
|
|
13 |
from datetime import datetime
|
14 |
import json
|
15 |
import traceback
|
16 |
+
from typing import Optional, List, Dict
|
17 |
+
from langchain_core.tracers import ConsoleCallbackHandler
|
18 |
+
from langchain_core.callbacks import CallbackManager
|
19 |
|
20 |
# Initialize environment variables
|
21 |
load_dotenv()
|
22 |
|
23 |
+
# Initialize FastAPI app
|
24 |
+
app = FastAPI(title="Status Law Assistant API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Models for request/response
|
27 |
+
class ChatRequest(BaseModel):
|
28 |
+
message: str
|
29 |
+
|
30 |
+
class ChatResponse(BaseModel):
|
31 |
+
response: str
|
32 |
+
context: Optional[str] = None
|
33 |
+
|
34 |
+
# Global variables
|
35 |
+
VECTOR_STORE_PATH = "vector_store"
|
36 |
+
URLS = [
|
37 |
+
"https://status.law",
|
38 |
+
"https://status.law/about",
|
39 |
+
"https://status.law/careers",
|
40 |
+
"https://status.law/tariffs-for-services-of-protection-against-extradition",
|
41 |
+
"https://status.law/challenging-sanctions",
|
42 |
+
"https://status.law/law-firm-contact-legal-protection"
|
43 |
+
"https://status.law/cross-border-banking-legal-issues",
|
44 |
+
"https://status.law/extradition-defense",
|
45 |
+
"https://status.law/international-prosecution-protection",
|
46 |
+
"https://status.law/interpol-red-notice-removal",
|
47 |
+
"https://status.law/practice-areas",
|
48 |
+
"https://status.law/reputation-protection",
|
49 |
+
"https://status.law/faq"
|
50 |
+
]
|
51 |
+
|
52 |
+
# Enhanced logging
|
53 |
+
class CustomCallbackHandler(ConsoleCallbackHandler):
|
54 |
+
def on_chain_end(self, run):
|
55 |
log_entry = {
|
56 |
"timestamp": datetime.now().isoformat(),
|
57 |
+
"run_id": str(run.id),
|
58 |
+
"inputs": run.inputs,
|
59 |
+
"outputs": run.outputs,
|
60 |
+
"execution_time": run.end_time - run.start_time if run.end_time else None,
|
61 |
+
"metadata": run.metadata
|
62 |
}
|
63 |
|
64 |
os.makedirs("chat_history", exist_ok=True)
|
65 |
+
with open("chat_history/detailed_logs.json", "a", encoding="utf-8") as f:
|
66 |
+
json.dump(log_entry, f, ensure_ascii=False)
|
67 |
+
f.write("\n")
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Initialize models
|
|
|
70 |
def init_models():
|
|
|
71 |
try:
|
72 |
+
callback_handler = CustomCallbackHandler()
|
73 |
+
callback_manager = CallbackManager([callback_handler])
|
74 |
+
|
75 |
llm = ChatGroq(
|
76 |
model_name="llama-3.3-70b-versatile",
|
77 |
temperature=0.6,
|
78 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
79 |
+
callback_manager=callback_manager
|
80 |
)
|
81 |
embeddings = HuggingFaceEmbeddings(
|
82 |
model_name="intfloat/multilingual-e5-large-instruct"
|
83 |
)
|
|
|
84 |
return llm, embeddings
|
85 |
except Exception as e:
|
86 |
+
raise Exception(f"Model initialization failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Knowledge base management
|
89 |
+
def build_knowledge_base(embeddings):
|
90 |
try:
|
|
|
91 |
documents = []
|
92 |
+
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
93 |
|
94 |
+
for url in URLS:
|
95 |
+
try:
|
96 |
+
loader = WebBaseLoader(url)
|
97 |
+
docs = loader.load()
|
98 |
+
documents.extend(docs)
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Failed to load {url}: {str(e)}")
|
101 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
if not documents:
|
104 |
+
raise Exception("No documents loaded!")
|
|
|
105 |
|
106 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
107 |
+
chunk_size=500,
|
108 |
+
chunk_overlap=100
|
109 |
+
)
|
110 |
+
chunks = text_splitter.split_documents(documents)
|
111 |
+
|
112 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
113 |
+
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
|
114 |
+
|
115 |
+
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
raise Exception(f"Knowledge base creation failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Initialize models and knowledge base on startup
|
120 |
+
llm, embeddings = init_models()
|
121 |
+
vector_store = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
if os.path.exists(VECTOR_STORE_PATH):
|
124 |
+
try:
|
125 |
+
vector_store = FAISS.load_local(
|
126 |
+
VECTOR_STORE_PATH,
|
127 |
+
embeddings,
|
128 |
+
allow_dangerous_deserialization=True
|
129 |
+
)
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Failed to load existing knowledge base: {str(e)}")
|
132 |
|
133 |
+
if vector_store is None:
|
134 |
+
vector_store = build_knowledge_base(embeddings)
|
|
|
|
|
|
|
135 |
|
136 |
+
# API endpoints
|
137 |
+
@app.post("/chat", response_model=ChatResponse)
|
138 |
+
async def chat_endpoint(request: ChatRequest):
|
139 |
+
try:
|
140 |
+
# Retrieve context
|
141 |
+
context_docs = vector_store.similarity_search(request.message)
|
142 |
+
context_text = "\n".join([d.page_content for d in context_docs])
|
143 |
+
|
144 |
# Generate response
|
145 |
+
prompt_template = PromptTemplate.from_template('''
|
146 |
+
You are a helpful and polite legal assistant at Status Law.
|
147 |
+
You answer in the language in which the question was asked.
|
148 |
+
Answer the question based on the context provided.
|
149 |
+
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
|
150 |
+
- For all users: +32465594521 (landline phone).
|
151 |
+
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
|
152 |
+
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
153 |
+
|
154 |
+
Context: {context}
|
155 |
+
Question: {question}
|
156 |
+
|
157 |
+
Response Guidelines:
|
158 |
+
1. Answer in the user's language
|
159 |
+
2. Cite sources when possible
|
160 |
+
3. Offer contact options if unsure
|
161 |
+
''')
|
162 |
+
|
163 |
+
chain = prompt_template | llm | StrOutputParser()
|
164 |
+
response = chain.invoke({
|
165 |
+
"context": context_text,
|
166 |
+
"question": request.message
|
167 |
+
})
|
168 |
+
|
169 |
+
# Log interaction
|
170 |
+
log_interaction(request.message, response, context_text)
|
171 |
+
|
172 |
+
return ChatResponse(response=response, context=context_text)
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
raise HTTPException(status_code=500, detail=str(e))
|
176 |
|
177 |
+
@app.post("/rebuild-kb")
|
178 |
+
async def rebuild_knowledge_base():
|
179 |
+
try:
|
180 |
+
global vector_store
|
181 |
+
vector_store = build_knowledge_base(embeddings)
|
182 |
+
return {"status": "success", "message": "Knowledge base rebuilt successfully"}
|
183 |
+
except Exception as e:
|
184 |
+
raise HTTPException(status_code=500, detail=str(e))
|
185 |
|
186 |
+
def log_interaction(user_input: str, bot_response: str, context: str):
|
187 |
+
try:
|
188 |
+
log_entry = {
|
189 |
+
"timestamp": datetime.now().isoformat(),
|
190 |
+
"user_input": user_input,
|
191 |
+
"bot_response": bot_response,
|
192 |
+
"context": context[:500],
|
193 |
+
"kb_version": "1.1" # You might want to implement version tracking
|
194 |
+
}
|
195 |
+
|
196 |
+
os.makedirs("chat_history", exist_ok=True)
|
197 |
+
with open("chat_history/chat_logs.json", "a", encoding="utf-8") as f:
|
198 |
+
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Logging error: {str(e)}")
|
202 |
+
print(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
import uvicorn
|
206 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
@@ -1,23 +1,18 @@
|
|
1 |
-
|
2 |
langchain-community
|
3 |
langchain-core
|
4 |
langchain-huggingface
|
5 |
langchain-groq
|
6 |
python-dotenv
|
7 |
-
beautifulsoup4
|
8 |
faiss-cpu
|
9 |
requests
|
10 |
-
|
11 |
-
|
12 |
fastapi
|
13 |
uvicorn[standard]
|
14 |
pydantic
|
15 |
-
python-multipart
|
16 |
pandas
|
17 |
-
langchain
|
18 |
-
plotly
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
|
|
|
|
|
|
|
1 |
+
# Основные компоненты для работы с LLM и базой знаний
|
2 |
langchain-community
|
3 |
langchain-core
|
4 |
langchain-huggingface
|
5 |
langchain-groq
|
6 |
python-dotenv
|
|
|
7 |
faiss-cpu
|
8 |
requests
|
9 |
+
|
10 |
+
# Для API и логирования
|
11 |
fastapi
|
12 |
uvicorn[standard]
|
13 |
pydantic
|
|
|
14 |
pandas
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Для LangChain логирования
|
17 |
+
langgraph
|
18 |
+
langchain-core[tracing]
|
run.sh
CHANGED
@@ -1,5 +1,2 @@
|
|
1 |
#!/bin/bash
|
2 |
-
|
3 |
-
# Запуск Streamlit и FastAPI параллельно
|
4 |
-
streamlit run app.py & # Запуск чат-бота
|
5 |
-
uvicorn api.main:app --reload # Запуск API для анализа логов
|
|
|
1 |
#!/bin/bash
|
2 |
+
uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
|
|
|
|
|