File size: 6,120 Bytes
56fd21a ea4670b 56fd21a ea4670b 56fd21a ea4670b 5193d26 8c4af83 56fd21a 5193d26 8c4af83 56fd21a ea4670b 56fd21a 5193d26 56fd21a ea4670b 56fd21a f289b0a 56fd21a 1fc15a8 5193d26 1fc15a8 ea4670b bb5baba ea4670b 2aa225e ea4670b 56fd21a ea4670b 56fd21a 5193d26 ea4670b 5193d26 ea4670b 5193d26 ea4670b 5193d26 ea4670b 0e8391a 5193d26 ea4670b 5193d26 ea4670b 5193d26 ea4670b 5193d26 ea4670b 5193d26 56fd21a 5193d26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from api import router as analysis_router
from utils import ChatAnalyzer, setup_chat_analysis
# Initialize environment variables
load_dotenv()
app = FastAPI(title="Status Law Assistant API")
app.include_router(analysis_router)
# --------------- Model Initialization ---------------
def init_models():
"""Initialize AI models"""
try:
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=os.getenv("GROQ_API_KEY")
)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
return llm, embeddings
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model initialization failed: {str(e)}")
# --------------- Knowledge Base Management ---------------
VECTOR_STORE_PATH = "vector_store"
URLS = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-against-extradition-en",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection"
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
def build_knowledge_base(_embeddings):
"""Build or update the knowledge base"""
try:
start_time = time.time()
documents = []
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
for url in URLS:
try:
loader = WebBaseLoader(url)
docs = loader.load()
documents.extend(docs)
except Exception as e:
print(f"Failed to load {url}: {str(e)}")
continue
if not documents:
raise HTTPException(status_code=500, detail="No documents loaded")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
vector_store = FAISS.from_documents(chunks, _embeddings)
vector_store.save_local(
folder_path=VECTOR_STORE_PATH,
index_name="index"
)
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
raise HTTPException(status_code=500, detail="FAISS index file not created")
return vector_store
except Exception as e:
raise HTTPException(status_code=500, detail=f"Knowledge base creation failed: {str(e)}")
# --------------- API Models ---------------
class ChatRequest(BaseModel):
message: str
class ChatResponse(BaseModel):
response: str
# --------------- API Routes ---------------
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
try:
llm, embeddings = init_models()
if not os.path.exists(VECTOR_STORE_PATH):
vector_store = build_knowledge_base(embeddings)
else:
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
context_docs = vector_store.similarity_search(request.message)
context_text = "\n".join([d.page_content for d in context_docs])
prompt_template = PromptTemplate.from_template('''
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
# ... остальной текст промпта ...
Context: {context}
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Cite sources when possible
3. Offer contact options if unsure
''')
chain = prompt_template | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": request.message
})
# Log interaction
log_interaction(request.message, response, context_text)
return ChatResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# --------------- Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str):
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"bot_response": bot_response,
"context": context[:500],
"kb_version": datetime.now().strftime("%Y%m%d-%H%M%S")
}
os.makedirs("chat_history", exist_ok=True)
log_path = os.path.join("chat_history", "chat_logs.json")
with open(log_path, "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
except Exception as e:
print(f"Logging error: {str(e)}")
print(traceback.format_exc())
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|