flux-lightning / app.py
Jordan Legg
fix
f37eddd
raw
history blame
8.13 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
def preprocess_image(image, image_size):
print(f"Preprocessing image to size: {image_size}x{image_size}")
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)), # Use model-specific size
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
print(f"Image shape after preprocessing: {image.shape}")
return image
def encode_image(image, vae):
print("Encoding image using the VAE")
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print(f"Latents shape after encoding: {latents.shape}")
return latents
# A utility function to log shapes and other relevant information
def log_tensor_info(tensor, name):
print(f"{name} shape: {tensor.shape} dtype: {tensor.dtype} device: {tensor.device}")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
print(f"Inference started with prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Using seed: {seed}")
generator = torch.Generator().manual_seed(seed)
if init_image is None:
print("No initial image provided, processing text2img")
try:
print("Calling the diffusion pipeline for text2img")
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
image = result.images[0]
print(f"Generated image shape: {image.size}")
# Inspect the output and log relevant details
print("Logging detailed information for text2img:")
# Log intermediate latent information if accessible
print("Logging complete.")
except Exception as e:
print(f"Pipeline call failed with error: {e}")
raise
else:
print("Initial image provided, processing img2img")
vae_image_size = pipe.vae.config.sample_size
print(f"Expected VAE image size: {vae_image_size}")
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
latents = encode_image(init_image, pipe.vae)
print("Interpolating latents to match model's input size...")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
log_tensor_info(latents, "Latents after interpolation")
latent_channels = pipe.vae.config.latent_channels
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
if latent_channels != 64:
print(f"Converting latent channels from {latent_channels} to 64")
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
log_tensor_info(latents, "Latents after channel conversion")
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
log_tensor_info(latents, "Latents after reshaping for transformer")
try:
print("Calling the transformer with latents")
# Initialize timestep variable
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
_ = pipe.transformer(latents, timestep=timestep)
print("Transformer call succeeded")
except Exception as e:
print(f"Transformer call failed with error: {e}")
raise
try:
print("Calling the diffusion pipeline with latents")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
except Exception as e:
print(f"Pipeline call with latents failed with error: {e}")
raise
print("Inference complete")
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()