Spaces:
Runtime error
Runtime error
File size: 8,125 Bytes
7f891bb 2e306db 126a4f5 2e306db 044186b fd56722 7f891bb 2e306db da39f41 2e306db d2cb214 7f891bb 2e306db da39f41 2e306db 69e75b1 b54a3db 044186b 69e75b1 044186b 69e75b1 044186b e514cac b54a3db 044186b b54a3db 044186b b54a3db 044186b 22e5a11 d2cb214 da39f41 b54a3db da39f41 b54a3db da39f41 69e75b1 5b33905 29a504c 5b33905 e6d3c53 5b33905 29a504c 22e5a11 e6d3c53 22e5a11 5b33905 b54a3db 5b33905 da39f41 69e75b1 da39f41 878ec45 22e5a11 da39f41 22e5a11 878ec45 b54a3db 878ec45 b54a3db 2811e7f 22e5a11 878ec45 22e5a11 5b33905 409e82d f37eddd 409e82d b54a3db 29a504c 22e5a11 29a504c da39f41 b54a3db da39f41 7f891bb 2e306db 126a4f5 2e306db da39f41 2e306db aed3a85 5e46cf5 aed3a85 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db 7f891bb da39f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
def preprocess_image(image, image_size):
print(f"Preprocessing image to size: {image_size}x{image_size}")
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)), # Use model-specific size
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
print(f"Image shape after preprocessing: {image.shape}")
return image
def encode_image(image, vae):
print("Encoding image using the VAE")
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print(f"Latents shape after encoding: {latents.shape}")
return latents
# A utility function to log shapes and other relevant information
def log_tensor_info(tensor, name):
print(f"{name} shape: {tensor.shape} dtype: {tensor.dtype} device: {tensor.device}")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
print(f"Inference started with prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Using seed: {seed}")
generator = torch.Generator().manual_seed(seed)
if init_image is None:
print("No initial image provided, processing text2img")
try:
print("Calling the diffusion pipeline for text2img")
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
image = result.images[0]
print(f"Generated image shape: {image.size}")
# Inspect the output and log relevant details
print("Logging detailed information for text2img:")
# Log intermediate latent information if accessible
print("Logging complete.")
except Exception as e:
print(f"Pipeline call failed with error: {e}")
raise
else:
print("Initial image provided, processing img2img")
vae_image_size = pipe.vae.config.sample_size
print(f"Expected VAE image size: {vae_image_size}")
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
latents = encode_image(init_image, pipe.vae)
print("Interpolating latents to match model's input size...")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
log_tensor_info(latents, "Latents after interpolation")
latent_channels = pipe.vae.config.latent_channels
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
if latent_channels != 64:
print(f"Converting latent channels from {latent_channels} to 64")
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
log_tensor_info(latents, "Latents after channel conversion")
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
log_tensor_info(latents, "Latents after reshaping for transformer")
try:
print("Calling the transformer with latents")
# Initialize timestep variable
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
_ = pipe.transformer(latents, timestep=timestep)
print("Transformer call succeeded")
except Exception as e:
print(f"Transformer call failed with error: {e}")
raise
try:
print("Calling the diffusion pipeline with latents")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
except Exception as e:
print(f"Pipeline call with latents failed with error: {e}")
raise
print("Inference complete")
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|