Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
044186b
1
Parent(s):
b11c213
fix: using the VAE directly
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
|
|
|
|
6 |
from diffusers import DiffusionPipeline
|
7 |
|
8 |
# Define constants
|
@@ -14,6 +16,22 @@ MAX_IMAGE_SIZE = 2048
|
|
14 |
# Load the diffusion pipeline
|
15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@spaces.GPU()
|
18 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
@@ -23,22 +41,23 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
23 |
if init_image is not None:
|
24 |
# Process img2img
|
25 |
init_image = init_image.convert("RGB")
|
26 |
-
init_image =
|
|
|
27 |
image = pipe(
|
28 |
prompt=prompt,
|
29 |
-
init_image=init_image,
|
30 |
-
width=width,
|
31 |
height=height,
|
|
|
32 |
num_inference_steps=num_inference_steps,
|
33 |
generator=generator,
|
34 |
-
guidance_scale=0.0
|
|
|
35 |
).images[0]
|
36 |
else:
|
37 |
# Process text2img
|
38 |
image = pipe(
|
39 |
prompt=prompt,
|
40 |
-
width=width,
|
41 |
height=height,
|
|
|
42 |
num_inference_steps=num_inference_steps,
|
43 |
generator=generator,
|
44 |
guidance_scale=0.0
|
@@ -164,3 +183,4 @@ with gr.Blocks(css=css) as demo:
|
|
164 |
|
165 |
demo.launch()
|
166 |
|
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
from diffusers import DiffusionPipeline
|
9 |
|
10 |
# Define constants
|
|
|
16 |
# Load the diffusion pipeline
|
17 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
18 |
|
19 |
+
def preprocess_image(image):
|
20 |
+
# Preprocess the image for the VAE
|
21 |
+
preprocess = transforms.Compose([
|
22 |
+
transforms.Resize((512, 512)), # Adjust the size as needed
|
23 |
+
transforms.ToTensor(),
|
24 |
+
transforms.Normalize([0.5], [0.5])
|
25 |
+
])
|
26 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
27 |
+
return image
|
28 |
+
|
29 |
+
def encode_image(image, vae):
|
30 |
+
# Encode the image using the VAE
|
31 |
+
with torch.no_grad():
|
32 |
+
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
33 |
+
return latents
|
34 |
+
|
35 |
@spaces.GPU()
|
36 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
37 |
if randomize_seed:
|
|
|
41 |
if init_image is not None:
|
42 |
# Process img2img
|
43 |
init_image = init_image.convert("RGB")
|
44 |
+
init_image = preprocess_image(init_image)
|
45 |
+
latents = encode_image(init_image, pipe.vae)
|
46 |
image = pipe(
|
47 |
prompt=prompt,
|
|
|
|
|
48 |
height=height,
|
49 |
+
width=width,
|
50 |
num_inference_steps=num_inference_steps,
|
51 |
generator=generator,
|
52 |
+
guidance_scale=0.0,
|
53 |
+
latents=latents
|
54 |
).images[0]
|
55 |
else:
|
56 |
# Process text2img
|
57 |
image = pipe(
|
58 |
prompt=prompt,
|
|
|
59 |
height=height,
|
60 |
+
width=width,
|
61 |
num_inference_steps=num_inference_steps,
|
62 |
generator=generator,
|
63 |
guidance_scale=0.0
|
|
|
183 |
|
184 |
demo.launch()
|
185 |
|
186 |
+
|