import gradio as gr import numpy as np import random import spaces import torch from PIL import Image from torchvision import transforms from diffusers import DiffusionPipeline # Define constants dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Load the diffusion pipeline pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) def preprocess_image(image, image_size): print(f"Preprocessing image to size: {image_size}x{image_size}") preprocess = transforms.Compose([ transforms.Resize((image_size, image_size)), # Use model-specific size transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization ]) image = preprocess(image).unsqueeze(0).to(device, dtype=dtype) print(f"Image shape after preprocessing: {image.shape}") return image def encode_image(image, vae): print("Encoding image using the VAE") with torch.no_grad(): latents = vae.encode(image).latent_dist.sample() * 0.18215 print(f"Latents shape after encoding: {latents.shape}") return latents # A utility function to log shapes and other relevant information def log_tensor_info(tensor, name): print(f"{name} shape: {tensor.shape} dtype: {tensor.dtype} device: {tensor.device}") @spaces.GPU() def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): print(f"Inference started with prompt: {prompt}") if randomize_seed: seed = random.randint(0, MAX_SEED) print(f"Using seed: {seed}") generator = torch.Generator().manual_seed(seed) if init_image is None: print("No initial image provided, processing text2img") try: print("Calling the diffusion pipeline for text2img") result = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, max_sequence_length=256 ) image = result.images[0] print(f"Generated image shape: {image.size}") # Inspect the output and log relevant details print("Logging detailed information for text2img:") # Log intermediate latent information if accessible print("Logging complete.") except Exception as e: print(f"Pipeline call failed with error: {e}") raise else: print("Initial image provided, processing img2img") vae_image_size = pipe.vae.config.sample_size print(f"Expected VAE image size: {vae_image_size}") init_image = init_image.convert("RGB") init_image = preprocess_image(init_image, vae_image_size) latents = encode_image(init_image, pipe.vae) print("Interpolating latents to match model's input size...") latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8)) log_tensor_info(latents, "Latents after interpolation") latent_channels = pipe.vae.config.latent_channels print(f"Expected latent channels: 64, current latent channels: {latent_channels}") if latent_channels != 64: print(f"Converting latent channels from {latent_channels} to 64") conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype) latents = conv(latents) log_tensor_info(latents, "Latents after channel conversion") latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64) log_tensor_info(latents, "Latents after reshaping for transformer") try: print("Calling the transformer with latents") # Initialize timestep variable timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype) _ = pipe.transformer(latents, timestep=timestep) print("Transformer call succeeded") except Exception as e: print(f"Transformer call failed with error: {e}") raise try: print("Calling the diffusion pipeline with latents") image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, latents=latents ).images[0] except Exception as e: print(f"Pipeline call with latents failed with error: {e}") raise print("Inference complete") return image, seed # Define example prompts examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] # CSS styling for the Japanese-inspired interface css = """ body { background-color: #fff; font-family: 'Noto Sans JP', sans-serif; color: #333; } #col-container { margin: 0 auto; max-width: 520px; border: 2px solid #000; padding: 20px; background-color: #f7f7f7; border-radius: 10px; } .gr-button { background-color: #e60012; color: #fff; border: 2px solid #000; } .gr-button:hover { background-color: #c20010; } .gr-slider, .gr-checkbox, .gr-textbox { border: 2px solid #000; } .gr-accordion { border: 2px solid #000; background-color: #fff; } .gr-image { border: 2px solid #000; } """ # Create the Gradio interface with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): init_image = gr.Image(label="Initial Image (optional)", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed] ) demo.launch()