CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
9ec5ec4 verified
raw
history blame
11.4 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
import re
import psutil
import subprocess
# ---------------------------------------------------------------------------------------
# Persistent directory for Hugging Face Spaces
# ---------------------------------------------------------------------------------------
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# ---------------------------------------------------------------------------------------
# Add src to path
# ---------------------------------------------------------------------------------------
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# ---------------------------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------------------------
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu_percent = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] 🧠 CPU: {cpu_percent}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True,
text=True,
)
if result.returncode == 0:
mem_used, mem_total, util = result.stdout.strip().split(", ")
print(f"[{tag}] ⚡ GPU: {mem_used}MB / {mem_total}MB | Utilization: {util}%")
else:
print(f"[{tag}] ⚡ GPU info not available.")
except Exception as e:
print(f"[{tag}] ⚠️ Failed to log system usage: {e}")
def init_agent():
print("🔁 Initializing TxAgent...")
log_system_usage("Before Model Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Model Load")
print("✅ TxAgent is ready.")
print("📦 Cached model files:")
for root, _, files in os.walk(model_cache_dir):
for file in files:
print(os.path.join(root, file))
return agent
# ---------------------------------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------------------------------
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
""")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze_potential_oversights(message: str, history: list, files: list):
history = history + [{"role": "user", "content": message},
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
yield history, None
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')
]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted_data = "\n".join(results)
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
max_extracted_chars = 12000
truncated_data = extracted_data[:max_extracted_chars]
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{truncated_data}
### Potential Oversights:
"""
response = ""
try:
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[]
):
if chunk is None: continue
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
cleaned = response.replace("[TOOL_CALLS]", "").strip()
history[-1] = {"role": "assistant", "content": cleaned}
yield history, None
except Exception as agent_error:
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed: {str(agent_error)}"}
yield history, None
return
final_output = response.replace("[TOOL_CALLS]", "").strip()
if not final_output:
final_output = "No clear oversights identified. Recommend comprehensive review."
history[-1] = {"role": "assistant", "content": final_output}
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
yield history, report_path
send_btn.click(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
msg_input.submit(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
gr.Examples([
["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]],
inputs=msg_input)
return demo
# ---------------------------------------------------------------------------------------
# Launch
# ---------------------------------------------------------------------------------------
if __name__ == "__main__":
print("🚀 Starting TxAgent App...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)