CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
9a76893 verified
raw
history blame
7.72 kB
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str) -> List[str]:
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
lines, chunks, curr_chunk = text.split("\n"), [], []
curr_tokens = sum(len(line.split()) for line in curr_chunk)
for line in lines:
line_tokens = len(line.split())
if curr_tokens + line_tokens > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
curr_chunk, curr_tokens = [line], line_tokens
else:
curr_chunk.append(line)
curr_tokens += line_tokens
if curr_chunk:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""Analyze these clinical notes and provide:
- Diagnostic patterns
- Medication issues
- Missed opportunities
- Inconsistencies
- Follow-up recommendations
Respond with clear bullet points:
{chunk}"""
def init_agent():
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
import shutil
shutil.copy("data/new_tool.json", tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
messages = chatbot_state.copy() if chatbot_state else []
if file is None:
messages.append(("assistant", "❌ Please upload a valid Excel file."))
return messages, None
messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
yield messages, None
try:
text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(text)
messages.append(("assistant", "🔍 Analyzing clinical data..."))
yield messages, None
full_report = []
for i, chunk in enumerate(chunks, 1):
prompt = build_prompt_from_text(chunk)
response = ""
for res in agent.run_gradio_chat(
message=prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
if isinstance(res, str):
response += res
elif hasattr(res, "content"):
response += res.content
cleaned = clean_response(response)
full_report.append(cleaned)
# Update progress in chat
progress_msg = f"✅ Analyzed section {i}/{len(chunks)}"
if len(messages) > 2 and "Analyzed section" in messages[-1][1]:
messages[-1] = ("assistant", progress_msg)
else:
messages.append(("assistant", progress_msg))
yield messages, None
# Generate final report
final_report = "## 🧠 Final Clinical Report\n\n" + "\n\n".join(full_report)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append(("assistant", f"✅ Report generated and saved: {os.path.basename(report_path)}"))
messages.append(("assistant", final_report))
yield messages, report_path
except Exception as e:
messages.append(("assistant", f"❌ Error: {str(e)}"))
yield messages, None
def create_ui(agent):
with gr.Blocks(css="""
body {
background: #10141f;
color: #ffffff;
font-family: 'Inter', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
padding: 30px;
width: 100vw;
max-width: 100%;
border-radius: 0;
background-color: #1a1f2e;
}
.chatbot {
background-color: #131720;
border-radius: 12px;
padding: 20px;
height: 600px;
overflow-y: auto;
border: 1px solid #2c3344;
}
.gr-button {
background: linear-gradient(135deg, #4b4ced, #37b6e9);
color: white;
font-weight: 500;
border: none;
padding: 10px 20px;
border-radius: 8px;
transition: background 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(135deg, #37b6e9, #4b4ced);
}
.report-content {
background-color: #1a1f2e;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
border: 1px solid #2c3344;
}
.bullet-points {
margin-left: 20px;
}
""") as demo:
gr.Markdown("""# Clinical Reasoning Assistant
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
""")
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot")
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("Analyze")
report_output = gr.File(label="Download Report", visible=False)
chatbot_state = gr.State([])
analyze_btn.click(
fn=process_final_report,
inputs=[file_upload, chatbot_state, gr.State(agent)],
outputs=[chatbot, report_output],
show_progress="hidden"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)