File size: 7,720 Bytes
f75a23b f394b25 d184610 f394b25 9a76893 d16299c 1c5bd8e d14630a d8282f1 abd27cc f6e551c d16299c f6e551c 9a76893 abd27cc f6e551c 4bfbcac 0fb33af f75a23b 9a76893 1244d40 7a8204e f6e551c d16299c f6e551c d16299c ad85a12 e99ba15 a42578c e99ba15 ad85a12 9a76893 ad85a12 9a76893 e99ba15 9a76893 ad85a12 e99ba15 9a76893 e99ba15 ad85a12 9a76893 ad85a12 9a76893 b929a03 9a76893 b929a03 9a76893 f6e551c d16299c e99ba15 9a76893 f6e551c d16299c e99ba15 d16299c e99ba15 d16299c f6e551c d16299c 9a76893 e99ba15 cfe82ea 9a76893 ac2fc78 9a76893 d14630a 0fb33af abd27cc ef6f12c 83aa052 e99ba15 a42578c 7a8204e ef6f12c 83aa052 a42578c 83aa052 ef6f12c 83aa052 ef6f12c 83aa052 ef6f12c 83aa052 6e4e750 83aa052 ef6f12c 83aa052 6e4e750 83aa052 ef6f12c 83aa052 6032958 ac2fc78 9a76893 abd27cc 9a76893 83aa052 9a76893 83aa052 9a76893 ef6f12c 9a76893 ef6f12c 0fb33af a71a831 55e3db0 abd27cc d8282f1 d16299c e41225f 9a76893 d8282f1 abd27cc ac2fc78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str) -> List[str]:
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
lines, chunks, curr_chunk = text.split("\n"), [], []
curr_tokens = sum(len(line.split()) for line in curr_chunk)
for line in lines:
line_tokens = len(line.split())
if curr_tokens + line_tokens > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
curr_chunk, curr_tokens = [line], line_tokens
else:
curr_chunk.append(line)
curr_tokens += line_tokens
if curr_chunk:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""Analyze these clinical notes and provide:
- Diagnostic patterns
- Medication issues
- Missed opportunities
- Inconsistencies
- Follow-up recommendations
Respond with clear bullet points:
{chunk}"""
def init_agent():
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
import shutil
shutil.copy("data/new_tool.json", tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
messages = chatbot_state.copy() if chatbot_state else []
if file is None:
messages.append(("assistant", "โ Please upload a valid Excel file."))
return messages, None
messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
yield messages, None
try:
text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(text)
messages.append(("assistant", "๐ Analyzing clinical data..."))
yield messages, None
full_report = []
for i, chunk in enumerate(chunks, 1):
prompt = build_prompt_from_text(chunk)
response = ""
for res in agent.run_gradio_chat(
message=prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
if isinstance(res, str):
response += res
elif hasattr(res, "content"):
response += res.content
cleaned = clean_response(response)
full_report.append(cleaned)
# Update progress in chat
progress_msg = f"โ
Analyzed section {i}/{len(chunks)}"
if len(messages) > 2 and "Analyzed section" in messages[-1][1]:
messages[-1] = ("assistant", progress_msg)
else:
messages.append(("assistant", progress_msg))
yield messages, None
# Generate final report
final_report = "## ๐ง Final Clinical Report\n\n" + "\n\n".join(full_report)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append(("assistant", f"โ
Report generated and saved: {os.path.basename(report_path)}"))
messages.append(("assistant", final_report))
yield messages, report_path
except Exception as e:
messages.append(("assistant", f"โ Error: {str(e)}"))
yield messages, None
def create_ui(agent):
with gr.Blocks(css="""
body {
background: #10141f;
color: #ffffff;
font-family: 'Inter', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
padding: 30px;
width: 100vw;
max-width: 100%;
border-radius: 0;
background-color: #1a1f2e;
}
.chatbot {
background-color: #131720;
border-radius: 12px;
padding: 20px;
height: 600px;
overflow-y: auto;
border: 1px solid #2c3344;
}
.gr-button {
background: linear-gradient(135deg, #4b4ced, #37b6e9);
color: white;
font-weight: 500;
border: none;
padding: 10px 20px;
border-radius: 8px;
transition: background 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(135deg, #37b6e9, #4b4ced);
}
.report-content {
background-color: #1a1f2e;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
border: 1px solid #2c3344;
}
.bullet-points {
margin-left: 20px;
}
""") as demo:
gr.Markdown("""# Clinical Reasoning Assistant
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
""")
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot")
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("Analyze")
report_output = gr.File(label="Download Report", visible=False)
chatbot_state = gr.State([])
analyze_btn.click(
fn=process_final_report,
inputs=[file_upload, chatbot_state, gr.State(agent)],
outputs=[chatbot, report_output],
show_progress="hidden"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |