Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
-
import json
|
5 |
import gradio as gr
|
6 |
-
from typing import List, Tuple
|
7 |
-
import hashlib
|
8 |
-
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
@@ -16,16 +13,15 @@ os.makedirs(persistent_dir, exist_ok=True)
|
|
16 |
|
17 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
18 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
19 |
-
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
|
22 |
-
for d in [model_cache_dir, tool_cache_dir,
|
23 |
os.makedirs(d, exist_ok=True)
|
24 |
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
26 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
27 |
|
28 |
-
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
|
29 |
from txagent.txagent import TxAgent
|
30 |
|
31 |
MAX_MODEL_TOKENS = 32768
|
@@ -39,9 +35,6 @@ def clean_response(text: str) -> str:
|
|
39 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
40 |
return text.strip()
|
41 |
|
42 |
-
def estimate_tokens(text: str) -> int:
|
43 |
-
return len(text) // 3.5 + 1
|
44 |
-
|
45 |
def extract_text_from_excel(file_path: str) -> str:
|
46 |
all_text = []
|
47 |
xls = pd.ExcelFile(file_path)
|
@@ -52,47 +45,41 @@ def extract_text_from_excel(file_path: str) -> str:
|
|
52 |
all_text.extend(sheet_text)
|
53 |
return "\n".join(all_text)
|
54 |
|
55 |
-
def split_text_into_chunks(text: str
|
56 |
-
effective_max =
|
57 |
-
lines, chunks, curr_chunk
|
|
|
|
|
58 |
for line in lines:
|
59 |
-
|
60 |
-
if curr_tokens +
|
61 |
if curr_chunk:
|
62 |
chunks.append("\n".join(curr_chunk))
|
63 |
-
|
64 |
-
break
|
65 |
-
curr_chunk, curr_tokens = [line], t
|
66 |
else:
|
67 |
curr_chunk.append(line)
|
68 |
-
curr_tokens +=
|
69 |
-
if curr_chunk
|
70 |
chunks.append("\n".join(curr_chunk))
|
71 |
return chunks
|
72 |
|
73 |
def build_prompt_from_text(chunk: str) -> str:
|
74 |
-
return f"""
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
- Diagnostic Patterns
|
79 |
-
- Medication Issues
|
80 |
-
- Missed Opportunities
|
81 |
- Inconsistencies
|
82 |
-
- Follow-up
|
83 |
|
84 |
-
|
85 |
|
86 |
-
{chunk}
|
87 |
-
|
88 |
-
---
|
89 |
-
Respond in well-structured bullet points with medical reasoning.
|
90 |
-
"""
|
91 |
|
92 |
def init_agent():
|
93 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
94 |
if not os.path.exists(tool_path):
|
95 |
-
shutil
|
|
|
96 |
agent = TxAgent(
|
97 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
98 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
@@ -105,68 +92,62 @@ def init_agent():
|
|
105 |
agent.init_model()
|
106 |
return agent
|
107 |
|
108 |
-
def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]],
|
109 |
-
messages = chatbot_state if chatbot_state else []
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
|
113 |
messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
|
114 |
-
|
115 |
-
chunks = split_text_into_chunks(text)
|
116 |
-
chunk_responses = [None] * len(chunks)
|
117 |
-
|
118 |
-
def analyze_chunk(i, chunk):
|
119 |
-
prompt = build_prompt_from_text(chunk)
|
120 |
-
response = ""
|
121 |
-
for res in agent.run_gradio_chat(
|
122 |
-
message=prompt, history=[], temperature=0.2,
|
123 |
-
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
124 |
-
call_agent=False, conversation=[]
|
125 |
-
):
|
126 |
-
if isinstance(res, str):
|
127 |
-
response += res
|
128 |
-
elif hasattr(res, "content"):
|
129 |
-
response += res.content
|
130 |
-
elif isinstance(res, list):
|
131 |
-
for r in res:
|
132 |
-
if hasattr(r, "content"):
|
133 |
-
response += r.content
|
134 |
-
return i, clean_response(response)
|
135 |
-
|
136 |
-
with ThreadPoolExecutor(max_workers=1) as executor:
|
137 |
-
futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
|
138 |
-
for f in as_completed(futures):
|
139 |
-
i, result = f.result()
|
140 |
-
chunk_responses[i] = result
|
141 |
-
|
142 |
-
valid = [r for r in chunk_responses if r and not r.startswith("❌")]
|
143 |
-
if not valid:
|
144 |
-
return messages + [("assistant", "❌ No valid chunk results.")], None, ""
|
145 |
-
|
146 |
-
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
|
147 |
-
messages.append(("assistant", "📊 Generating final report..."))
|
148 |
-
|
149 |
-
final_report = ""
|
150 |
-
for res in agent.run_gradio_chat(
|
151 |
-
message=summary_prompt, history=[], temperature=0.2,
|
152 |
-
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
153 |
-
call_agent=False, conversation=[]
|
154 |
-
):
|
155 |
-
if isinstance(res, str):
|
156 |
-
final_report += res
|
157 |
-
elif hasattr(res, "content"):
|
158 |
-
final_report += res.content
|
159 |
-
|
160 |
-
cleaned = clean_response(final_report)
|
161 |
-
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
162 |
-
with open(report_path, 'w') as f:
|
163 |
-
f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")
|
164 |
-
|
165 |
-
# Add the report content to the chat messages
|
166 |
-
messages.append(("assistant", f"✅ Report generated and saved: {os.path.basename(report_path)}"))
|
167 |
-
messages.append(("assistant", f"## Final Report\n\n{cleaned}"))
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
def create_ui(agent):
|
172 |
with gr.Blocks(css="""
|
@@ -211,24 +192,25 @@ def create_ui(agent):
|
|
211 |
margin-top: 10px;
|
212 |
border: 1px solid #2c3344;
|
213 |
}
|
|
|
|
|
|
|
214 |
""") as demo:
|
215 |
-
gr.Markdown("""#
|
216 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
217 |
""")
|
218 |
-
|
|
|
219 |
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
220 |
analyze_btn = gr.Button("Analyze")
|
221 |
report_output = gr.File(label="Download Report", visible=False)
|
222 |
-
chatbot_state = gr.State(
|
223 |
-
|
224 |
-
def update_ui(file, current_state):
|
225 |
-
messages, report_path, final_text = process_final_report(agent, file, current_state)
|
226 |
-
return messages, gr.update(visible=report_path is not None, value=report_path), messages
|
227 |
-
|
228 |
analyze_btn.click(
|
229 |
-
fn=
|
230 |
-
inputs=[file_upload, chatbot_state],
|
231 |
-
outputs=[chatbot, report_output,
|
|
|
232 |
)
|
233 |
|
234 |
return demo
|
@@ -237,7 +219,12 @@ if __name__ == "__main__":
|
|
237 |
try:
|
238 |
agent = init_agent()
|
239 |
demo = create_ui(agent)
|
240 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
241 |
except Exception as e:
|
242 |
print(f"Error: {str(e)}")
|
243 |
sys.exit(1)
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import gradio as gr
|
5 |
+
from typing import List, Tuple
|
|
|
|
|
6 |
import re
|
7 |
from datetime import datetime
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
13 |
|
14 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
15 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
|
16 |
report_dir = os.path.join(persistent_dir, "reports")
|
17 |
|
18 |
+
for d in [model_cache_dir, tool_cache_dir, report_dir]:
|
19 |
os.makedirs(d, exist_ok=True)
|
20 |
|
21 |
os.environ["HF_HOME"] = model_cache_dir
|
22 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
23 |
|
24 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
|
25 |
from txagent.txagent import TxAgent
|
26 |
|
27 |
MAX_MODEL_TOKENS = 32768
|
|
|
35 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
36 |
return text.strip()
|
37 |
|
|
|
|
|
|
|
38 |
def extract_text_from_excel(file_path: str) -> str:
|
39 |
all_text = []
|
40 |
xls = pd.ExcelFile(file_path)
|
|
|
45 |
all_text.extend(sheet_text)
|
46 |
return "\n".join(all_text)
|
47 |
|
48 |
+
def split_text_into_chunks(text: str) -> List[str]:
|
49 |
+
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
|
50 |
+
lines, chunks, curr_chunk = text.split("\n"), [], []
|
51 |
+
curr_tokens = sum(len(line.split()) for line in curr_chunk)
|
52 |
+
|
53 |
for line in lines:
|
54 |
+
line_tokens = len(line.split())
|
55 |
+
if curr_tokens + line_tokens > effective_max:
|
56 |
if curr_chunk:
|
57 |
chunks.append("\n".join(curr_chunk))
|
58 |
+
curr_chunk, curr_tokens = [line], line_tokens
|
|
|
|
|
59 |
else:
|
60 |
curr_chunk.append(line)
|
61 |
+
curr_tokens += line_tokens
|
62 |
+
if curr_chunk:
|
63 |
chunks.append("\n".join(curr_chunk))
|
64 |
return chunks
|
65 |
|
66 |
def build_prompt_from_text(chunk: str) -> str:
|
67 |
+
return f"""Analyze these clinical notes and provide:
|
68 |
+
- Diagnostic patterns
|
69 |
+
- Medication issues
|
70 |
+
- Missed opportunities
|
|
|
|
|
|
|
71 |
- Inconsistencies
|
72 |
+
- Follow-up recommendations
|
73 |
|
74 |
+
Respond with clear bullet points:
|
75 |
|
76 |
+
{chunk}"""
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def init_agent():
|
79 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
80 |
if not os.path.exists(tool_path):
|
81 |
+
import shutil
|
82 |
+
shutil.copy("data/new_tool.json", tool_path)
|
83 |
agent = TxAgent(
|
84 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
85 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
|
|
92 |
agent.init_model()
|
93 |
return agent
|
94 |
|
95 |
+
def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
|
96 |
+
messages = chatbot_state.copy() if chatbot_state else []
|
97 |
+
|
98 |
+
if file is None:
|
99 |
+
messages.append(("assistant", "❌ Please upload a valid Excel file."))
|
100 |
+
return messages, None
|
101 |
|
102 |
messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
|
103 |
+
yield messages, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
try:
|
106 |
+
text = extract_text_from_excel(file.name)
|
107 |
+
chunks = split_text_into_chunks(text)
|
108 |
+
|
109 |
+
messages.append(("assistant", "🔍 Analyzing clinical data..."))
|
110 |
+
yield messages, None
|
111 |
+
|
112 |
+
full_report = []
|
113 |
+
for i, chunk in enumerate(chunks, 1):
|
114 |
+
prompt = build_prompt_from_text(chunk)
|
115 |
+
response = ""
|
116 |
+
|
117 |
+
for res in agent.run_gradio_chat(
|
118 |
+
message=prompt, history=[], temperature=0.2,
|
119 |
+
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
120 |
+
call_agent=False, conversation=[]
|
121 |
+
):
|
122 |
+
if isinstance(res, str):
|
123 |
+
response += res
|
124 |
+
elif hasattr(res, "content"):
|
125 |
+
response += res.content
|
126 |
+
|
127 |
+
cleaned = clean_response(response)
|
128 |
+
full_report.append(cleaned)
|
129 |
+
|
130 |
+
# Update progress in chat
|
131 |
+
progress_msg = f"✅ Analyzed section {i}/{len(chunks)}"
|
132 |
+
if len(messages) > 2 and "Analyzed section" in messages[-1][1]:
|
133 |
+
messages[-1] = ("assistant", progress_msg)
|
134 |
+
else:
|
135 |
+
messages.append(("assistant", progress_msg))
|
136 |
+
yield messages, None
|
137 |
+
|
138 |
+
# Generate final report
|
139 |
+
final_report = "## 🧠 Final Clinical Report\n\n" + "\n\n".join(full_report)
|
140 |
+
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
141 |
+
with open(report_path, 'w') as f:
|
142 |
+
f.write(final_report)
|
143 |
+
|
144 |
+
messages.append(("assistant", f"✅ Report generated and saved: {os.path.basename(report_path)}"))
|
145 |
+
messages.append(("assistant", final_report))
|
146 |
+
yield messages, report_path
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
messages.append(("assistant", f"❌ Error: {str(e)}"))
|
150 |
+
yield messages, None
|
151 |
|
152 |
def create_ui(agent):
|
153 |
with gr.Blocks(css="""
|
|
|
192 |
margin-top: 10px;
|
193 |
border: 1px solid #2c3344;
|
194 |
}
|
195 |
+
.bullet-points {
|
196 |
+
margin-left: 20px;
|
197 |
+
}
|
198 |
""") as demo:
|
199 |
+
gr.Markdown("""# Clinical Reasoning Assistant
|
200 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
201 |
""")
|
202 |
+
|
203 |
+
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot")
|
204 |
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
205 |
analyze_btn = gr.Button("Analyze")
|
206 |
report_output = gr.File(label="Download Report", visible=False)
|
207 |
+
chatbot_state = gr.State([])
|
208 |
+
|
|
|
|
|
|
|
|
|
209 |
analyze_btn.click(
|
210 |
+
fn=process_final_report,
|
211 |
+
inputs=[file_upload, chatbot_state, gr.State(agent)],
|
212 |
+
outputs=[chatbot, report_output],
|
213 |
+
show_progress="hidden"
|
214 |
)
|
215 |
|
216 |
return demo
|
|
|
219 |
try:
|
220 |
agent = init_agent()
|
221 |
demo = create_ui(agent)
|
222 |
+
demo.launch(
|
223 |
+
server_name="0.0.0.0",
|
224 |
+
server_port=7860,
|
225 |
+
allowed_paths=["/data/hf_cache/reports"],
|
226 |
+
share=False
|
227 |
+
)
|
228 |
except Exception as e:
|
229 |
print(f"Error: {str(e)}")
|
230 |
sys.exit(1)
|