|
import sys |
|
import os |
|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from typing import List |
|
from concurrent.futures import ThreadPoolExecutor |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
import logging |
|
import torch |
|
import gc |
|
from diskcache import Cache |
|
import time |
|
import asyncio |
|
|
|
|
|
try: |
|
import pypdfium2 as pdfium |
|
import pytesseract |
|
from PIL import Image |
|
HAS_PYPDFIUM2 = True |
|
except ImportError: |
|
HAS_PYPDFIUM2 = False |
|
import pdfplumber |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logging.getLogger("pdfminer").setLevel(logging.ERROR) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
cache = Cache(file_cache_dir, size_limit=10 * 1024**3) |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
async def extract_all_pages_async(file_path: str, progress_callback=None, force_ocr=False) -> str: |
|
try: |
|
extracted_text = "" |
|
total_pages = 0 |
|
text_chunks = [] |
|
|
|
if HAS_PYPDFIUM2: |
|
pdf = pdfium.PdfDocument(file_path) |
|
total_pages = len(pdf) |
|
if total_pages == 0: |
|
return "" |
|
|
|
def extract_page(i): |
|
page = pdf[i] |
|
text = page.get_textpage().get_text_range() or "" |
|
if (not text.strip() or len(text) < 100) and force_ocr and 'pytesseract' in sys.modules: |
|
logger.info("Falling back to OCR for page %d", i + 1) |
|
bitmap = page.render(scale=2).to_pil() |
|
text = pytesseract.image_to_string(bitmap, lang="eng") |
|
return (i, f"=== Page {i + 1} ===\n{text.strip()}") |
|
|
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [executor.submit(extract_page, i) for i in range(total_pages)] |
|
for future in as_completed(futures): |
|
page_num, text = future.result() |
|
text_chunks.append((page_num, text)) |
|
logger.debug("Page %d extracted: %s...", page_num + 1, text[:50]) |
|
if progress_callback: |
|
progress_callback(page_num + 1, total_pages) |
|
|
|
text_chunks.sort(key=lambda x: x[0]) |
|
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip()) |
|
pdf.close() |
|
else: |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
if total_pages == 0: |
|
return "" |
|
|
|
for i, page in enumerate(pdf.pages): |
|
text = page.extract_text() or "" |
|
text_chunks.append((i, f"=== Page {i + 1} ===\n{text.strip()}")) |
|
logger.debug("Page %d extracted: %s...", i + 1, text[:50]) |
|
if progress_callback: |
|
progress_callback(i + 1, total_pages) |
|
|
|
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip()) |
|
|
|
logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text)) |
|
if len(extracted_text) < 1000 and not force_ocr and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules: |
|
logger.info("Text too short, retrying with OCR") |
|
return await extract_all_pages_async(file_path, progress_callback, force_ocr=True) |
|
return extracted_text |
|
except Exception as e: |
|
logger.error("PDF processing error: %s", e) |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str: |
|
try: |
|
file_h = file_hash(file_path) |
|
cache_key = f"{file_h}_{file_type}" |
|
if cache_key in cache: |
|
logger.info("Using cached extraction for %s", file_path) |
|
return cache[cache_key] |
|
|
|
if file_type == "pdf": |
|
text = asyncio.run(extract_all_pages_async(file_path, progress_callback, force_ocr=False)) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) |
|
elif file_type == "csv": |
|
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, |
|
skip_blank_lines=False, on_bad_lines="skip") |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
elif file_type in ["xls", "xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
except Exception: |
|
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
else: |
|
result = json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
cache[cache_key] = result |
|
logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result)) |
|
return result |
|
except Exception as e: |
|
logger.error("Error processing %s: %s", os.path.basename(file_path), e) |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def log_system_usage(tag=""): |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2)) |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util) |
|
except Exception as e: |
|
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e) |
|
|
|
def clean_response(text: str) -> str: |
|
text = sanitize_utf8(text) |
|
text = text.replace("[", "").replace("]", "").replace("None", "") |
|
text = text.replace("\n\n\n", "\n\n") |
|
sections = {} |
|
current_section = None |
|
seen_lines = set() |
|
for line in text.splitlines(): |
|
line = line.strip() |
|
if not line or line in seen_lines: |
|
continue |
|
seen_lines.add(line) |
|
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line) |
|
if section_match: |
|
current_section = section_match.group(1) |
|
sections.setdefault(current_section, []) |
|
continue |
|
if current_section and line.startswith("- "): |
|
sections[current_section].append(line) |
|
cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings] |
|
result = "\n\n".join(cleaned).strip() |
|
logger.debug("Cleaned response length: %d chars", len(result)) |
|
return result or "No oversights identified" |
|
|
|
def summarize_findings(all_responses: List[str]) -> str: |
|
combined_response = "\n\n".join(all_responses) |
|
if not combined_response or all("No oversights identified" in resp.lower() for resp in all_responses): |
|
return "### Comprehensive Clinical Oversight Summary\nNo critical oversights were identified across the provided patient records after thorough analysis." |
|
|
|
sections = { |
|
"Missed Diagnoses": [], |
|
"Medication Conflicts": [], |
|
"Incomplete Assessments": [], |
|
"Urgent Follow-up": [] |
|
} |
|
current_section = None |
|
seen_findings = set() |
|
for line in combined_response.splitlines(): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line) |
|
if section_match: |
|
current_section = section_match.group(1) |
|
continue |
|
if current_section and line.startswith("- ") and line not in seen_findings: |
|
sections[current_section].append(line) |
|
seen_findings.add(line) |
|
|
|
summary_lines = [] |
|
for heading, findings in sections.items(): |
|
if findings: |
|
summary_lines.append(f"### {heading}") |
|
for finding in findings: |
|
summary_lines.append(f"{finding}\n - **Risks**: Potential adverse outcomes if not addressed.\n - **Recommendation**: Immediate clinical review and follow-up.") |
|
|
|
result = "### Comprehensive Clinical Oversight Summary\n" + "\n".join(summary_lines) if summary_lines else "### Comprehensive Clinical Oversight Summary\nNo critical oversights identified." |
|
logger.debug("Summary length: %d chars", len(result)) |
|
return result |
|
|
|
def init_agent(): |
|
logger.info("Initializing model...") |
|
log_system_usage("Before Load") |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=False, |
|
enable_rag=False, |
|
init_rag_num=0, |
|
step_rag_num=0, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
log_system_usage("After Load") |
|
logger.info("Agent Ready") |
|
return agent |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>") |
|
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages", visible=False) |
|
final_summary = gr.Markdown(label="Comprehensive Clinical Oversight Summary") |
|
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") |
|
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) |
|
send_btn = gr.Button("Analyze", variant="primary") |
|
download_output = gr.File(label="Download Full Report") |
|
progress_bar = gr.Progress() |
|
|
|
prompt_template = """ |
|
Analyze the patient record excerpt for clinical oversights. Provide a detailed, evidence-based summary in markdown with findings grouped under headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, Urgent Follow-up. For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No oversights identified" once. |
|
|
|
Patient Record Excerpt: |
|
{chunk} |
|
""" |
|
|
|
async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()): |
|
history.append({"role": "user", "content": message}) |
|
yield history, None, "" |
|
|
|
extracted = "" |
|
file_hash_value = "" |
|
if files: |
|
def update_extraction_progress(current, total): |
|
progress(current / total, desc=f"Extracting text... Page {current}/{total}") |
|
return history, None, "" |
|
|
|
futures = [convert_file_to_json(f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files] |
|
results = [sanitize_utf8(future) for future in futures] |
|
extracted = "\n".join(results) |
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
|
|
history.append({"role": "assistant", "content": "✅ Text extraction complete."}) |
|
yield history, None, "" |
|
logger.info("Extracted text length: %d chars", len(extracted)) |
|
|
|
chunk_size = 3000 |
|
chunks = [extracted[i:i + chunk_size] for i in range(0, max(len(extracted), 1), chunk_size)] or [""] |
|
logger.info("Created %d chunks", len(chunks)) |
|
for i, chunk in enumerate(chunks): |
|
logger.debug("Chunk %d content: %s...", i + 1, chunk[:100]) |
|
all_responses = [] |
|
batch_size = 2 |
|
|
|
try: |
|
for batch_idx in range(0, len(chunks), batch_size): |
|
batch_chunks = chunks[batch_idx:batch_idx + batch_size] |
|
batch_prompts = [prompt_template.format(chunk=chunk[:2000]) for chunk in batch_chunks] |
|
batch_responses = [] |
|
|
|
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}") |
|
|
|
async def process_chunk(prompt): |
|
chunk_response = "" |
|
raw_outputs = [] |
|
for chunk_output in agent.run_gradio_chat( |
|
message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=1024, call_agent=False, conversation=[] |
|
): |
|
if chunk_output is None: |
|
continue |
|
if isinstance(chunk_output, list): |
|
for m in chunk_output: |
|
if hasattr(m, 'content') and m.content: |
|
raw_outputs.append(m.content) |
|
cleaned = clean_response(m.content) |
|
chunk_response += cleaned + "\n\n" |
|
elif isinstance(chunk_output, str) and chunk_output.strip(): |
|
raw_outputs.append(chunk_output) |
|
cleaned = clean_response(chunk_output) |
|
chunk_response += cleaned + "\n\n" |
|
logger.debug("Raw outputs: %s", raw_outputs[:100]) |
|
logger.debug("Chunk response length: %d chars", len(chunk_response)) |
|
return chunk_response |
|
|
|
futures = [process_chunk(prompt) for prompt in batch_prompts] |
|
batch_responses = await asyncio.gather(*futures) |
|
all_responses.extend([resp.strip() for resp in batch_responses if resp.strip()]) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
summary = summarize_findings(all_responses) |
|
history.append({"role": "assistant", "content": "Analysis complete. See summary below."}) |
|
yield history, None, summary |
|
|
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None |
|
if report_path: |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(summary) |
|
yield history, report_path if report_path and os.path.exists(report_path) else None, summary |
|
|
|
except Exception as e: |
|
logger.error("Analysis error: %s", e) |
|
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) |
|
yield history, None, f"### Comprehensive Clinical Oversight Summary\nError occurred during analysis: {str(e)}" |
|
|
|
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary]) |
|
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary]) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
logger.info("Launching app...") |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue(api_open=False).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |
|
finally: |
|
if torch.distributed.is_initialized(): |
|
torch.distributed.destroy_process_group() |