CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
0b3aa6e verified
raw
history blame
12 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"PDF processing error for {file_path}: {e}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
logger.debug(f"Converting file {file_path} (type: {file_type})")
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
logger.debug(f"Using cached JSON for {file_path}")
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
logger.debug(f"Cached JSON for {file_path}")
return result
except Exception as e:
logger.error(f"Error processing {file_path}: {e}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
logger.warning(f"[{tag}] GPU/CPU monitor failed: {e}")
def init_agent():
logger.info("🔁 Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
logger.debug(f"Copying tool file from {default_tool_path} to {target_tool_path}")
shutil.copy(default_tool_path, target_tool_path)
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("✅ Agent Ready")
return agent
except Exception as e:
logger.error(f"Failed to initialize agent: {e}", exc_info=True)
raise
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
logger.debug(f"Analyze called with message: {message[:100]}, history length: {len(history)}, files: {len(files)}")
# Initialize history if empty
if not history:
history = []
# Append user message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
yield history, None
logger.debug("Yielded initial history with analyzing message")
extracted = ""
file_hash_value = ""
if files:
logger.debug(f"Processing {len(files)} files")
try:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
logger.debug(f"Extracted file content: {extracted[:100]}")
except Exception as e:
logger.error(f"File processing failed: {e}")
history.append({"role": "assistant", "content": f"❌ File processing error: {str(e)}"})
yield history, None
return
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:12000]}
### Potential Oversights:
"""
logger.debug(f"Constructed prompt: {prompt[:100]}")
try:
# Remove the temporary "Analyzing..." message
if history and history[-1]["content"].startswith("⏳"):
history.pop()
logger.debug("Removed analyzing message")
# Process agent response
for chunk in agent.run_gradio_chat(
message=prompt,
history=history,
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[],
):
logger.debug(f"Received chunk: {chunk}")
if chunk is None:
logger.warning("Chunk is None, skipping")
continue
# Handle chunk as a list of ChatMessage objects
if isinstance(chunk, list):
for m in chunk:
if hasattr(m, 'content') and m.content:
history.append({"role": m.role, "content": sanitize_utf8(m.content)})
logger.debug(f"Appended message: {m.content[:50]}")
yield history, None
# Handle chunk as a string
elif isinstance(chunk, str) and chunk.strip():
if history and history[-1]["role"] == "assistant":
history[-1]["content"] += "\n" + sanitize_utf8(chunk)
else:
history.append({"role": "assistant", "content": sanitize_utf8(chunk)})
logger.debug(f"Updated history with string chunk: {chunk[:50]}")
yield history, None
else:
logger.warning(f"Unexpected chunk type: {type(chunk)}")
# Provide report path if available
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
logger.debug(f"Report path: {report_path}")
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Error in analyze: {e}", exc_info=True)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
logger.info("🚀 Launching app...")
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False,
debug=True # Enable debug mode for better error reporting
)
except Exception as e:
logger.error(f"Failed to launch app: {e}", exc_info=True)
raise