File size: 12,001 Bytes
25e2c05 a6968c2 973658c 41eb6bd a6968c2 0b3aa6e a6968c2 3dfd69d a6968c2 3dfd69d a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 41eb6bd c3218a0 41eb6bd a6968c2 0b3aa6e 3dfd69d a6968c2 0b3aa6e a6968c2 0b3aa6e 41eb6bd a6968c2 41eb6bd 0b3aa6e 41eb6bd a6968c2 0b3aa6e 41eb6bd a6968c2 0b3aa6e 41eb6bd 0b3aa6e a6968c2 0b3aa6e a6968c2 0b3aa6e 3dfd69d 41eb6bd 0b3aa6e 41eb6bd 0b3aa6e 3deb36c 41eb6bd c3218a0 0b3aa6e c3218a0 41eb6bd 0b3aa6e 41eb6bd 0b3aa6e 41eb6bd a6968c2 3dfd69d a6968c2 0b3aa6e 3deb36c 41eb6bd c3218a0 0b3aa6e c3218a0 41eb6bd 0b3aa6e 41eb6bd 0b3aa6e 41eb6bd 0b3aa6e 41eb6bd c3218a0 0b3aa6e 41eb6bd c3218a0 0b3aa6e c3218a0 0b3aa6e c3218a0 0b3aa6e c3218a0 0b3aa6e 41eb6bd 0b3aa6e 41eb6bd c3218a0 41eb6bd 0b3aa6e 41eb6bd 0b3aa6e 41eb6bd a6968c2 fe67870 e24be23 0b3aa6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"PDF processing error for {file_path}: {e}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
logger.debug(f"Converting file {file_path} (type: {file_type})")
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
logger.debug(f"Using cached JSON for {file_path}")
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
logger.debug(f"Cached JSON for {file_path}")
return result
except Exception as e:
logger.error(f"Error processing {file_path}: {e}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
logger.warning(f"[{tag}] GPU/CPU monitor failed: {e}")
def init_agent():
logger.info("🔁 Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
logger.debug(f"Copying tool file from {default_tool_path} to {target_tool_path}")
shutil.copy(default_tool_path, target_tool_path)
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("✅ Agent Ready")
return agent
except Exception as e:
logger.error(f"Failed to initialize agent: {e}", exc_info=True)
raise
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
logger.debug(f"Analyze called with message: {message[:100]}, history length: {len(history)}, files: {len(files)}")
# Initialize history if empty
if not history:
history = []
# Append user message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
yield history, None
logger.debug("Yielded initial history with analyzing message")
extracted = ""
file_hash_value = ""
if files:
logger.debug(f"Processing {len(files)} files")
try:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
logger.debug(f"Extracted file content: {extracted[:100]}")
except Exception as e:
logger.error(f"File processing failed: {e}")
history.append({"role": "assistant", "content": f"❌ File processing error: {str(e)}"})
yield history, None
return
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:12000]}
### Potential Oversights:
"""
logger.debug(f"Constructed prompt: {prompt[:100]}")
try:
# Remove the temporary "Analyzing..." message
if history and history[-1]["content"].startswith("⏳"):
history.pop()
logger.debug("Removed analyzing message")
# Process agent response
for chunk in agent.run_gradio_chat(
message=prompt,
history=history,
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[],
):
logger.debug(f"Received chunk: {chunk}")
if chunk is None:
logger.warning("Chunk is None, skipping")
continue
# Handle chunk as a list of ChatMessage objects
if isinstance(chunk, list):
for m in chunk:
if hasattr(m, 'content') and m.content:
history.append({"role": m.role, "content": sanitize_utf8(m.content)})
logger.debug(f"Appended message: {m.content[:50]}")
yield history, None
# Handle chunk as a string
elif isinstance(chunk, str) and chunk.strip():
if history and history[-1]["role"] == "assistant":
history[-1]["content"] += "\n" + sanitize_utf8(chunk)
else:
history.append({"role": "assistant", "content": sanitize_utf8(chunk)})
logger.debug(f"Updated history with string chunk: {chunk[:50]}")
yield history, None
else:
logger.warning(f"Unexpected chunk type: {type(chunk)}")
# Provide report path if available
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
logger.debug(f"Report path: {report_path}")
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Error in analyze: {e}", exc_info=True)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
logger.info("🚀 Launching app...")
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False,
debug=True # Enable debug mode for better error reporting
)
except Exception as e:
logger.error(f"Failed to launch app: {e}", exc_info=True)
raise |