File size: 12,001 Bytes
25e2c05
a6968c2
 
 
 
973658c
41eb6bd
a6968c2
 
 
 
 
 
0b3aa6e
 
 
 
 
a6968c2
3dfd69d
a6968c2
 
3dfd69d
a6968c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
 
 
 
 
 
41eb6bd
 
a6968c2
41eb6bd
c3218a0
41eb6bd
a6968c2
 
0b3aa6e
3dfd69d
a6968c2
 
0b3aa6e
a6968c2
 
 
 
0b3aa6e
41eb6bd
 
 
 
 
 
 
 
 
 
 
 
a6968c2
41eb6bd
 
 
 
 
 
 
 
 
0b3aa6e
41eb6bd
a6968c2
0b3aa6e
41eb6bd
a6968c2
 
 
 
 
0b3aa6e
41eb6bd
 
 
 
 
 
0b3aa6e
a6968c2
0b3aa6e
a6968c2
 
0b3aa6e
3dfd69d
 
 
41eb6bd
0b3aa6e
41eb6bd
 
0b3aa6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3deb36c
41eb6bd
 
 
 
 
 
 
 
 
c3218a0
0b3aa6e
 
 
 
 
 
c3218a0
 
41eb6bd
 
0b3aa6e
41eb6bd
 
 
 
0b3aa6e
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
 
a6968c2
 
 
 
 
3dfd69d
a6968c2
 
0b3aa6e
3deb36c
41eb6bd
c3218a0
 
 
0b3aa6e
c3218a0
 
41eb6bd
 
0b3aa6e
41eb6bd
 
 
 
 
 
0b3aa6e
41eb6bd
0b3aa6e
41eb6bd
c3218a0
0b3aa6e
41eb6bd
 
c3218a0
 
0b3aa6e
c3218a0
0b3aa6e
c3218a0
 
0b3aa6e
c3218a0
 
0b3aa6e
41eb6bd
0b3aa6e
 
41eb6bd
c3218a0
41eb6bd
0b3aa6e
41eb6bd
 
 
0b3aa6e
41eb6bd
 
 
 
 
a6968c2
fe67870
e24be23
0b3aa6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging

# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        logger.error(f"PDF processing error for {file_path}: {e}")
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    logger.debug(f"Converting file {file_path} (type: {file_type})")
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            logger.debug(f"Using cached JSON for {file_path}")
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        logger.debug(f"Cached JSON for {file_path}")
        return result
    except Exception as e:
        logger.error(f"Error processing {file_path}: {e}")
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        logger.warning(f"[{tag}] GPU/CPU monitor failed: {e}")

def init_agent():
    logger.info("🔁 Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        logger.debug(f"Copying tool file from {default_tool_path} to {target_tool_path}")
        shutil.copy(default_tool_path, target_tool_path)

    try:
        agent = TxAgent(
            model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
            rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
            tool_files_dict={"new_tool": target_tool_path},
            force_finish=True,
            enable_checker=True,
            step_rag_num=8,
            seed=100,
            additional_default_tools=[],
        )
        agent.init_model()
        log_system_usage("After Load")
        logger.info("✅ Agent Ready")
        return agent
    except Exception as e:
        logger.error(f"Failed to initialize agent: {e}", exc_info=True)
        raise

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: List[dict], files: List):
            logger.debug(f"Analyze called with message: {message[:100]}, history length: {len(history)}, files: {len(files)}")
            
            # Initialize history if empty
            if not history:
                history = []
            
            # Append user message
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
            yield history, None
            logger.debug("Yielded initial history with analyzing message")

            extracted = ""
            file_hash_value = ""
            if files:
                logger.debug(f"Processing {len(files)} files")
                try:
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                        results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                        extracted = "\n".join(results)
                        file_hash_value = file_hash(files[0].name) if files else ""
                    logger.debug(f"Extracted file content: {extracted[:100]}")
                except Exception as e:
                    logger.error(f"File processing failed: {e}")
                    history.append({"role": "assistant", "content": f"❌ File processing error: {str(e)}"})
                    yield history, None
                    return

            prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:12000]}
### Potential Oversights:
"""
            logger.debug(f"Constructed prompt: {prompt[:100]}")

            try:
                # Remove the temporary "Analyzing..." message
                if history and history[-1]["content"].startswith("⏳"):
                    history.pop()
                    logger.debug("Removed analyzing message")

                # Process agent response
                for chunk in agent.run_gradio_chat(
                    message=prompt,
                    history=history,
                    temperature=0.2,
                    max_new_tokens=2048,
                    max_token=4096,
                    call_agent=False,
                    conversation=[],
                ):
                    logger.debug(f"Received chunk: {chunk}")
                    if chunk is None:
                        logger.warning("Chunk is None, skipping")
                        continue

                    # Handle chunk as a list of ChatMessage objects
                    if isinstance(chunk, list):
                        for m in chunk:
                            if hasattr(m, 'content') and m.content:
                                history.append({"role": m.role, "content": sanitize_utf8(m.content)})
                                logger.debug(f"Appended message: {m.content[:50]}")
                                yield history, None
                    # Handle chunk as a string
                    elif isinstance(chunk, str) and chunk.strip():
                        if history and history[-1]["role"] == "assistant":
                            history[-1]["content"] += "\n" + sanitize_utf8(chunk)
                        else:
                            history.append({"role": "assistant", "content": sanitize_utf8(chunk)})
                        logger.debug(f"Updated history with string chunk: {chunk[:50]}")
                        yield history, None
                    else:
                        logger.warning(f"Unexpected chunk type: {type(chunk)}")

                # Provide report path if available
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                logger.debug(f"Report path: {report_path}")
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                logger.error(f"Error in analyze: {e}", exc_info=True)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    logger.info("🚀 Launching app...")
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False,
            debug=True  # Enable debug mode for better error reporting
        )
    except Exception as e:
        logger.error(f"Failed to launch app: {e}", exc_info=True)
        raise