import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import logging # Configure logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications', 'allergies', 'summary', 'impression', 'findings', 'recommendations'} def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_priority_pages(file_path: str, max_pages: int = 20) -> str: try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for i, page in enumerate(pdf.pages[:3]): text = page.extract_text() or "" text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}") for i, page in enumerate(pdf.pages[3:max_pages], start=4): page_text = page.extract_text() or "" if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS): text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}") return "\n\n".join(text_chunks) except Exception as e: logger.error(f"PDF processing error for {file_path}: {e}") return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str) -> str: logger.debug(f"Converting file {file_path} (type: {file_type})") try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): logger.debug(f"Using cached JSON for {file_path}") with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_priority_pages(file_path) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except Exception: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) logger.debug(f"Cached JSON for {file_path}") return result except Exception as e: logger.error(f"Error processing {file_path}: {e}") return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: logger.warning(f"[{tag}] GPU/CPU monitor failed: {e}") def init_agent(): logger.info("🔁 Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): logger.debug(f"Copying tool file from {default_tool_path} to {target_tool_path}") shutil.copy(default_tool_path, target_tool_path) try: agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=8, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("✅ Agent Ready") return agent except Exception as e: logger.error(f"Failed to initialize agent: {e}", exc_info=True) raise def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Full Report") def analyze(message: str, history: List[dict], files: List): logger.debug(f"Analyze called with message: {message[:100]}, history length: {len(history)}, files: {len(files)}") # Initialize history if empty if not history: history = [] # Append user message history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}) yield history, None logger.debug("Yielded initial history with analyzing message") extracted = "" file_hash_value = "" if files: logger.debug(f"Processing {len(files)} files") try: with ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join(results) file_hash_value = file_hash(files[0].name) if files else "" logger.debug(f"Extracted file content: {extracted[:100]}") except Exception as e: logger.error(f"File processing failed: {e}") history.append({"role": "assistant", "content": f"❌ File processing error: {str(e)}"}) yield history, None return prompt = f"""Review these medical records and identify EXACTLY what might have been missed: 1. List potential missed diagnoses 2. Flag any medication conflicts 3. Note incomplete assessments 4. Highlight abnormal results needing follow-up Medical Records: {extracted[:12000]} ### Potential Oversights: """ logger.debug(f"Constructed prompt: {prompt[:100]}") try: # Remove the temporary "Analyzing..." message if history and history[-1]["content"].startswith("⏳"): history.pop() logger.debug("Removed analyzing message") # Process agent response for chunk in agent.run_gradio_chat( message=prompt, history=history, temperature=0.2, max_new_tokens=2048, max_token=4096, call_agent=False, conversation=[], ): logger.debug(f"Received chunk: {chunk}") if chunk is None: logger.warning("Chunk is None, skipping") continue # Handle chunk as a list of ChatMessage objects if isinstance(chunk, list): for m in chunk: if hasattr(m, 'content') and m.content: history.append({"role": m.role, "content": sanitize_utf8(m.content)}) logger.debug(f"Appended message: {m.content[:50]}") yield history, None # Handle chunk as a string elif isinstance(chunk, str) and chunk.strip(): if history and history[-1]["role"] == "assistant": history[-1]["content"] += "\n" + sanitize_utf8(chunk) else: history.append({"role": "assistant", "content": sanitize_utf8(chunk)}) logger.debug(f"Updated history with string chunk: {chunk[:50]}") yield history, None else: logger.warning(f"Unexpected chunk type: {type(chunk)}") # Provide report path if available report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None logger.debug(f"Report path: {report_path}") yield history, report_path if report_path and os.path.exists(report_path) else None except Exception as e: logger.error(f"Error in analyze: {e}", exc_info=True) history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) yield history, None send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) return demo if __name__ == "__main__": logger.info("🚀 Launching app...") try: agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False, debug=True # Enable debug mode for better error reporting ) except Exception as e: logger.error(f"Failed to launch app: {e}", exc_info=True) raise