CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
6b4b480 verified
raw
history blame
18.1 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ProcessPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
import pyarrow as pa
import pyarrow.csv as pc
import pyarrow.parquet as pq
from vllm import LLM, SamplingParams
import asyncio
import threading
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# File handler for response logging
response_log_file = os.path.join("/data/hf_cache", "response_log.txt")
response_logger = logging.getLogger("ResponseLogger")
response_handler = logging.FileHandler(response_log_file, mode="a")
response_handler.setFormatter(logging.Formatter("%(asctime)s - %(message)s"))
response_logger.addHandler(response_handler)
response_logger.setLevel(logging.INFO)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str, progress_callback=None) -> str:
cache_key = f"pdf_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
batch_size = 5
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
processed_pages = 0
def extract_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
page_text = page.extract_text_simple() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
return results
with ProcessPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
processed_pages += batch_size
if progress_callback:
progress_callback(min(processed_pages, total_pages), total_pages)
result = "\n\n".join(filter(None, text_chunks))
cache[cache_key] = result
return result
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
cache_key = f"excel_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
table = pq.read_table(file_path)
df = table.to_pandas(use_threads=True, split_blocks=True)
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "excel"
}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Error processing Excel file: {e}")
return [{"error": f"Error processing Excel file: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
cache_key = f"csv_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
table = pc.read_csv(file_path, parse_options=pc.ParseOptions(invalid_row_handler=lambda x: "skip"))
df = table.to_pandas(use_threads=True, split_blocks=True)
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "csv"
}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Error processing CSV file: {e}")
return [{"error": f"Error processing CSV file: {str(e)}"}]
def process_file(file_path: str, file_type: str) -> List[Dict]:
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = 800) -> List[str]:
cache_key = f"tokens_{hashlib.md5(text.encode()).hexdigest()}"
if cache_key in cache:
return cache[cache_key]
tokens = tokenizer.encode(text, add_special_tokens=False)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk_tokens = tokens[i:i + max_tokens]
chunks.append(tokenizer.decode(chunk_tokens, skip_special_tokens=True))
cache[cache_key] = chunks
return chunks
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=0.1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
diagnoses = []
lines = text.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
text = " ".join(diagnoses)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
return text if text else ""
def summarize_findings(combined_response: str) -> str:
chunks = combined_response.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
lines = chunk.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
if len(unique_diagnoses) > 1:
summary += f", and {unique_diagnoses[-1]}"
elif len(unique_diagnoses) == 1:
summary = "Missed diagnoses include " + unique_diagnoses[0]
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
return summary.strip()
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
llm = LLM(
model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
gpu_memory_utilization=0.8,
max_model_len=2048,
tensor_parallel_size=1,
)
sampling_params = SamplingParams(
temperature=0.2,
max_tokens=256, # Reduced for faster streaming
stop=["</s>", "[INST]"],
)
log_system_usage("After Load")
logger.info("Agent Ready")
return llm, sampling_params
async def create_ui(llm, sampling_params):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
file_upload = gr.File(file_types=["pdf", "csv", "xls", "xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
prompt_template = """
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
def log_response_partial(text: str):
response_logger.info(text)
async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
with ProcessPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(
process_file,
f.name,
file_type
))
for future in as_completed(futures):
try:
extracted.extend(future.result())
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append({"error": f"Error processing file: {str(e)}"})
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
text_content = "\n".join(json.dumps(item) for item in extracted)
chunks = tokenize_and_chunk(text_content)
combined_response = ""
batch_size = 1
try:
for batch_idx in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
batch_prompts = [
prompt_template.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:800]
)
for i, chunk in enumerate(batch_chunks)
]
progress((batch_idx) / len(chunks),
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
with torch.no_grad():
for prompt in batch_prompts:
chunk_response = ""
current_response = ""
stream = llm.generate([prompt], sampling_params, use_tqdm=False)
for output in stream:
for request_output in output:
new_text = request_output.outputs[0].text[len(current_response):]
if new_text:
current_response += new_text
cleaned = clean_response(current_response)
if cleaned and cleaned != chunk_response:
chunk_response = cleaned
history[-1] = {"role": "assistant", "content": chunk_response}
threading.Thread(target=log_response_partial, args=(chunk_response,)).start()
yield history, None, ""
await asyncio.sleep(0.01) # Prevent UI blocking
if chunk_response:
combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response}\n"
torch.cuda.empty_cache()
gc.collect()
summary = summarize_findings(combined_response)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
threading.Thread(target=log_response_partial, args=(summary,)).start()
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
threading.Thread(target=log_response_partial, args=(f"Error: {str(e)}",)).start()
yield history, None, f"Error occurred during analysis: {str(e)}"
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
llm, sampling_params = init_agent()
demo = asyncio.run(create_ui(llm, sampling_params))
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()