import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List, Dict, Optional, Generator from concurrent.futures import ProcessPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import logging import torch import gc from diskcache import Cache import time from transformers import AutoTokenizer import pyarrow as pa import pyarrow.csv as pc import pyarrow.parquet as pq from vllm import LLM, SamplingParams import asyncio import threading # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # File handler for response logging response_log_file = os.path.join("/data/hf_cache", "response_log.txt") response_logger = logging.getLogger("ResponseLogger") response_handler = logging.FileHandler(response_log_file, mode="a") response_handler.setFormatter(logging.Formatter("%(asctime)s - %(message)s")) response_logger.addHandler(response_handler) response_logger.setLevel(logging.INFO) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Initialize cache with 10GB limit cache = Cache(file_cache_dir, size_limit=10 * 1024**3) # Initialize tokenizer for precise chunking tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B") def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_all_pages(file_path: str, progress_callback=None) -> str: cache_key = f"pdf_{file_hash(file_path)}" if cache_key in cache: return cache[cache_key] try: with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) if total_pages == 0: return "" batch_size = 5 batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)] text_chunks = [""] * total_pages processed_pages = 0 def extract_batch(start: int, end: int) -> List[tuple]: results = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages[start:end]: page_num = start + pdf.pages.index(page) page_text = page.extract_text_simple() or "" results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}")) return results with ProcessPoolExecutor(max_workers=4) as executor: futures = [executor.submit(extract_batch, start, end) for start, end in batches] for future in as_completed(futures): for page_num, text in future.result(): text_chunks[page_num] = text processed_pages += batch_size if progress_callback: progress_callback(min(processed_pages, total_pages), total_pages) result = "\n\n".join(filter(None, text_chunks)) cache[cache_key] = result return result except Exception as e: logger.error("PDF processing error: %s", e) return f"PDF processing error: {str(e)}" def excel_to_json(file_path: str) -> List[Dict]: cache_key = f"excel_{file_hash(file_path)}" if cache_key in cache: return cache[cache_key] try: table = pq.read_table(file_path) df = table.to_pandas(use_threads=True, split_blocks=True) content = df.where(pd.notnull(df), "").astype(str).values.tolist() result = [{ "filename": os.path.basename(file_path), "rows": content, "type": "excel" }] cache[cache_key] = result return result except Exception as e: logger.error(f"Error processing Excel file: {e}") return [{"error": f"Error processing Excel file: {str(e)}"}] def csv_to_json(file_path: str) -> List[Dict]: cache_key = f"csv_{file_hash(file_path)}" if cache_key in cache: return cache[cache_key] try: table = pc.read_csv(file_path, parse_options=pc.ParseOptions(invalid_row_handler=lambda x: "skip")) df = table.to_pandas(use_threads=True, split_blocks=True) content = df.where(pd.notnull(df), "").astype(str).values.tolist() result = [{ "filename": os.path.basename(file_path), "rows": content, "type": "csv" }] cache[cache_key] = result return result except Exception as e: logger.error(f"Error processing CSV file: {e}") return [{"error": f"Error processing CSV file: {str(e)}"}] def process_file(file_path: str, file_type: str) -> List[Dict]: try: if file_type == "pdf": text = extract_all_pages(file_path) return [{ "filename": os.path.basename(file_path), "content": text, "status": "initial", "type": "pdf" }] elif file_type in ["xls", "xlsx"]: return excel_to_json(file_path) elif file_type == "csv": return csv_to_json(file_path) else: return [{"error": f"Unsupported file type: {file_type}"}] except Exception as e: logger.error("Error processing %s: %s", os.path.basename(file_path), e) return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}] def tokenize_and_chunk(text: str, max_tokens: int = 800) -> List[str]: cache_key = f"tokens_{hashlib.md5(text.encode()).hexdigest()}" if cache_key in cache: return cache[cache_key] tokens = tokenizer.encode(text, add_special_tokens=False) chunks = [] for i in range(0, len(tokens), max_tokens): chunk_tokens = tokens[i:i + max_tokens] chunks.append(tokenizer.decode(chunk_tokens, skip_special_tokens=True)) cache[cache_key] = chunks return chunks def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=0.1) mem = psutil.virtual_memory() logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2)) result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util) except Exception as e: logger.error("[%s] GPU/CPU monitor failed: %s", tag, e) def clean_response(text: str) -> str: text = sanitize_utf8(text) text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) diagnoses = [] lines = text.splitlines() in_diagnoses_section = False for line in lines: line = line.strip() if not line: continue if re.match(r"###\s*Missed Diagnoses", line): in_diagnoses_section = True continue if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): in_diagnoses_section = False continue if in_diagnoses_section and re.match(r"-\s*.+", line): diagnosis = re.sub(r"^\-\s*", "", line).strip() if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): diagnoses.append(diagnosis) text = " ".join(diagnoses) text = re.sub(r"\s+", " ", text).strip() text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text) return text if text else "" def summarize_findings(combined_response: str) -> str: chunks = combined_response.split("--- Analysis for Chunk") diagnoses = [] for chunk in chunks: chunk = chunk.strip() if not chunk or "No oversights identified" in chunk: continue lines = chunk.splitlines() in_diagnoses_section = False for line in lines: line = line.strip() if not line: continue if re.match(r"###\s*Missed Diagnoses", line): in_diagnoses_section = True continue if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): in_diagnoses_section = False continue if in_diagnoses_section and re.match(r"-\s*.+", line): diagnosis = re.sub(r"^\-\s*", "", line).strip() if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): diagnoses.append(diagnosis) seen = set() unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))] if not unique_diagnoses: return "No missed diagnoses were identified in the provided records." summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1]) if len(unique_diagnoses) > 1: summary += f", and {unique_diagnoses[-1]}" elif len(unique_diagnoses) == 1: summary = "Missed diagnoses include " + unique_diagnoses[0] summary += ", all of which require urgent clinical review to prevent potential adverse outcomes." return summary.strip() def init_agent(): logger.info("Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) llm = LLM( model="mims-harvard/TxAgent-T1-Llama-3.1-8B", gpu_memory_utilization=0.8, max_model_len=2048, tensor_parallel_size=1, ) sampling_params = SamplingParams( temperature=0.2, max_tokens=256, # Reduced for faster streaming stop=["", "[INST]"], ) log_system_usage("After Load") logger.info("Agent Ready") return llm, sampling_params async def create_ui(llm, sampling_params): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages") final_summary = gr.Markdown(label="Summary of Missed Diagnoses") file_upload = gr.File(file_types=["pdf", "csv", "xls", "xlsx"], file_count="multiple") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Full Report") progress_bar = gr.Progress() prompt_template = """ Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence. Patient Record Excerpt (Chunk {0} of {1}): {chunk} """ def log_response_partial(text: str): response_logger.info(text) async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()): history.append({"role": "user", "content": message}) yield history, None, "" extracted = [] file_hash_value = "" if files: with ProcessPoolExecutor(max_workers=4) as executor: futures = [] for f in files: file_type = f.name.split(".")[-1].lower() futures.append(executor.submit( process_file, f.name, file_type )) for future in as_completed(futures): try: extracted.extend(future.result()) except Exception as e: logger.error(f"File processing error: {e}") extracted.append({"error": f"Error processing file: {str(e)}"}) file_hash_value = file_hash(files[0].name) if files else "" history.append({"role": "assistant", "content": "✅ File processing complete"}) yield history, None, "" text_content = "\n".join(json.dumps(item) for item in extracted) chunks = tokenize_and_chunk(text_content) combined_response = "" batch_size = 1 try: for batch_idx in range(0, len(chunks), batch_size): batch_chunks = chunks[batch_idx:batch_idx + batch_size] batch_prompts = [ prompt_template.format( batch_idx + i + 1, len(chunks), chunk=chunk[:800] ) for i, chunk in enumerate(batch_chunks) ] progress((batch_idx) / len(chunks), desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}") with torch.no_grad(): for prompt in batch_prompts: chunk_response = "" current_response = "" stream = llm.generate([prompt], sampling_params, use_tqdm=False) for output in stream: for request_output in output: new_text = request_output.outputs[0].text[len(current_response):] if new_text: current_response += new_text cleaned = clean_response(current_response) if cleaned and cleaned != chunk_response: chunk_response = cleaned history[-1] = {"role": "assistant", "content": chunk_response} threading.Thread(target=log_response_partial, args=(chunk_response,)).start() yield history, None, "" await asyncio.sleep(0.01) # Prevent UI blocking if chunk_response: combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response}\n" torch.cuda.empty_cache() gc.collect() summary = summarize_findings(combined_response) report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None if report_path: with open(report_path, "w", encoding="utf-8") as f: f.write(combined_response + "\n\n" + summary) threading.Thread(target=log_response_partial, args=(summary,)).start() yield history, report_path if report_path and os.path.exists(report_path) else None, summary except Exception as e: logger.error("Analysis error: %s", e) history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) threading.Thread(target=log_response_partial, args=(f"Error: {str(e)}",)).start() yield history, None, f"Error occurred during analysis: {str(e)}" send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}") msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}") return demo if __name__ == "__main__": try: logger.info("Launching app...") llm, sampling_params = init_agent() demo = asyncio.run(create_ui(llm, sampling_params)) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False ) finally: if torch.distributed.is_initialized(): torch.distributed.destroy_process_group()