CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
67dd49b verified
raw
history blame
17.7 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import multiprocessing
from functools import partial
import time
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def chunk_hash(chunk: str, prompt: str) -> str:
return hashlib.md5((chunk + prompt).encode("utf-8")).hexdigest()
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
"""Extract text from a range of PDF pages."""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start_page:end_page]:
page_text = page.extract_text() or ""
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"Error extracting pages {start_page}-{end_page}: {e}")
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Extract text from all pages of a PDF using parallel processing."""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
num_processes = min(6, multiprocessing.cpu_count())
pages_per_process = max(1, total_pages // num_processes)
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
for i in range(num_processes)]
if ranges[-1][1] != total_pages:
ranges[-1] = (ranges[-1][0], total_pages)
with multiprocessing.Pool(processes=num_processes) as pool:
extract_func = partial(extract_page_range, file_path)
results = []
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
results.append(result)
if progress_callback:
processed_pages = min((idx + 1) * pages_per_process, total_pages)
progress_callback(processed_pages, total_pages)
return "\n\n".join(filter(None, results))
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path, progress_callback)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
logger.error(f"Error processing {file_path}: {e}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
logger.error(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
"""Clean TxAgent response to group findings under tool-derived headings."""
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
tool_to_heading = {
"get_abuse_info_by_drug_name": "Drugs",
"get_dependence_info_by_drug_name": "Drugs",
"get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs",
"get_info_for_patients_by_drug_name": "Drugs",
}
sections = {}
current_section = None
current_tool = None
lines = text.splitlines()
for line in lines:
line = line.strip()
if not line:
continue
tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line)
if tool_match:
current_tool = tool_match.group(1)
continue
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up|Drugs)", line)
if section_match:
current_section = section_match.group(1)
if current_section not in sections:
sections[current_section] = []
continue
finding_match = re.match(r"-\s*.+", line)
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
if current_tool and current_tool in tool_to_heading:
heading = tool_to_heading[current_tool]
if heading not in sections:
sections[heading] = []
sections[heading].append(line)
else:
sections[current_section].append(line)
cleaned = []
for heading, findings in sections.items():
if findings:
cleaned.append(f"### {heading}\n" + "\n".join(findings))
text = "\n\n".join(cleaned).strip()
if not text:
text = ""
return text
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=2,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str, prompt_template: str) -> tuple:
"""Process a single chunk with error handling and caching."""
if not chunk.strip():
logger.warning(f"Chunk {chunk_idx} is empty, skipping...")
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
chunk_id = chunk_hash(chunk, prompt_template)
chunk_cache_path = os.path.join(cache_path, f"chunk_{chunk_id}.txt")
if os.path.exists(chunk_cache_path):
with open(chunk_cache_path, "r", encoding="utf-8") as f:
logger.info(f"Cache hit for chunk {chunk_idx}")
return chunk_idx, f.read()
prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:1000]) # Truncate to avoid token limits
chunk_response = ""
try:
for chunk_output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=512,
max_token=2048,
call_agent=False,
conversation=[],
):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned and re.search(r"###\s*\w+", cleaned):
chunk_response += cleaned + "\n\n"
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned and re.search(r"###\s*\w+", cleaned):
chunk_response += cleaned + "\n\n"
except Exception as e:
logger.error(f"Error processing chunk {chunk_idx}: {e}")
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nError occurred: {str(e)}\n\n"
if chunk_response:
with open(chunk_cache_path, "w", encoding="utf-8") as f:
f.write(chunk_response)
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
max_chunks_input = gr.Slider(minimum=1, maximum=50, value=5, step=1, label="Max Chunks to Analyze")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
prompt_template = """
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
- Clinical context (why the issue was missed or relevant details from the record).
- Potential risks if unaddressed (e.g., disease progression, adverse events).
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses.
Example Output:
### Drugs
[TOOL: get_abuse_info_by_drug_name]
- [Finding placeholder for drug-related issue]
### Missed Diagnoses
- [Finding placeholder for missed diagnosis]
### Incomplete Assessments
- [Finding placeholder for incomplete assessment]
### Urgent Follow-up
- [Finding placeholder for urgent follow-up]
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
def analyze(message: str, history: List[dict], files: List, max_chunks: int):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
total_pages = 0
processed_pages = 0
def update_extraction_progress(current, total):
nonlocal processed_pages, total_pages
processed_pages = current
total_pages = total
animation = ["πŸŒ€", "πŸ”„", "βš™οΈ", "πŸ”ƒ"][(int(time.time() * 2) % 4)]
history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
return history, None
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
history.pop()
history.append({"role": "assistant", "content": "βœ… Text extraction complete."})
yield history, None
chunk_size = 1000 # Reduced for speed
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
chunks = chunks[:max_chunks] # Limit to max_chunks
total_chunks = len(chunks)
combined_response = ""
if not chunks:
history.append({"role": "assistant", "content": "No content to analyze."})
yield history, None
return
try:
# Sequential processing to avoid VLLM error
for chunk_idx, chunk in enumerate(chunks, 1):
animation = ["πŸ”", "πŸ“Š", "🧠", "πŸ”Ž"][(int(time.time() * 2) % 4)]
history.append({"role": "assistant", "content": f"Analyzing chunk {chunk_idx}/{total_chunks}... {animation}"})
yield history, None
_, chunk_response = process_chunk(agent, chunk, chunk_idx, total_chunks, file_cache_dir, prompt_template)
combined_response += chunk_response
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
history[-1]["content"] = combined_response.strip()
else:
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)