import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import multiprocessing from functools import partial import time import logging # Setup logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def chunk_hash(chunk: str, prompt: str) -> str: return hashlib.md5((chunk + prompt).encode("utf-8")).hexdigest() def extract_page_range(file_path: str, start_page: int, end_page: int) -> str: """Extract text from a range of PDF pages.""" try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages[start_page:end_page]: page_text = page.extract_text() or "" text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}") return "\n\n".join(text_chunks) except Exception as e: logger.error(f"Error extracting pages {start_page}-{end_page}: {e}") return "" def extract_all_pages(file_path: str, progress_callback=None) -> str: """Extract text from all pages of a PDF using parallel processing.""" try: with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) if total_pages == 0: return "" num_processes = min(6, multiprocessing.cpu_count()) pages_per_process = max(1, total_pages // num_processes) ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages)) for i in range(num_processes)] if ranges[-1][1] != total_pages: ranges[-1] = (ranges[-1][0], total_pages) with multiprocessing.Pool(processes=num_processes) as pool: extract_func = partial(extract_page_range, file_path) results = [] for idx, result in enumerate(pool.starmap(extract_func, ranges)): results.append(result) if progress_callback: processed_pages = min((idx + 1) * pages_per_process, total_pages) progress_callback(processed_pages, total_pages) return "\n\n".join(filter(None, results)) except Exception as e: logger.error(f"PDF processing error: {e}") return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_all_pages(file_path, progress_callback) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except Exception: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: logger.error(f"Error processing {file_path}: {e}") return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: logger.error(f"[{tag}] GPU/CPU monitor failed: {e}") def clean_response(text: str) -> str: """Clean TxAgent response to group findings under tool-derived headings.""" text = sanitize_utf8(text) text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) tool_to_heading = { "get_abuse_info_by_drug_name": "Drugs", "get_dependence_info_by_drug_name": "Drugs", "get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs", "get_info_for_patients_by_drug_name": "Drugs", } sections = {} current_section = None current_tool = None lines = text.splitlines() for line in lines: line = line.strip() if not line: continue tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line) if tool_match: current_tool = tool_match.group(1) continue section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up|Drugs)", line) if section_match: current_section = section_match.group(1) if current_section not in sections: sections[current_section] = [] continue finding_match = re.match(r"-\s*.+", line) if finding_match and current_section and not re.match(r"-\s*No issues identified", line): if current_tool and current_tool in tool_to_heading: heading = tool_to_heading[current_tool] if heading not in sections: sections[heading] = [] sections[heading].append(line) else: sections[current_section].append(line) cleaned = [] for heading, findings in sections.items(): if findings: cleaned.append(f"### {heading}\n" + "\n".join(findings)) text = "\n\n".join(cleaned).strip() if not text: text = "" return text def init_agent(): logger.info("Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=2, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("Agent Ready") return agent def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str, prompt_template: str) -> tuple: """Process a single chunk with error handling and caching.""" if not chunk.strip(): logger.warning(f"Chunk {chunk_idx} is empty, skipping...") return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" chunk_id = chunk_hash(chunk, prompt_template) chunk_cache_path = os.path.join(cache_path, f"chunk_{chunk_id}.txt") if os.path.exists(chunk_cache_path): with open(chunk_cache_path, "r", encoding="utf-8") as f: logger.info(f"Cache hit for chunk {chunk_idx}") return chunk_idx, f.read() prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:1000]) # Truncate to avoid token limits chunk_response = "" try: for chunk_output in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=2048, call_agent=False, conversation=[], ): if chunk_output is None: continue if isinstance(chunk_output, list): for m in chunk_output: if hasattr(m, 'content') and m.content: cleaned = clean_response(m.content) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" elif isinstance(chunk_output, str) and chunk_output.strip(): cleaned = clean_response(chunk_output) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" except Exception as e: logger.error(f"Error processing chunk {chunk_idx}: {e}") return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nError occurred: {str(e)}\n\n" if chunk_response: with open(chunk_cache_path, "w", encoding="utf-8") as f: f.write(chunk_response) return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("