import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import multiprocessing from functools import partial import time import logging # Setup logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def chunk_hash(chunk: str, prompt: str) -> str: return hashlib.md5((chunk + prompt).encode("utf-8")).hexdigest() def extract_page_range(file_path: str, start_page: int, end_page: int) -> str: """Extract text from a range of PDF pages.""" try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages[start_page:end_page]: page_text = page.extract_text() or "" text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}") return "\n\n".join(text_chunks) except Exception as e: logger.error(f"Error extracting pages {start_page}-{end_page}: {e}") return "" def extract_all_pages(file_path: str, progress_callback=None) -> str: """Extract text from all pages of a PDF using parallel processing.""" try: with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) if total_pages == 0: return "" num_processes = min(6, multiprocessing.cpu_count()) pages_per_process = max(1, total_pages // num_processes) ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages)) for i in range(num_processes)] if ranges[-1][1] != total_pages: ranges[-1] = (ranges[-1][0], total_pages) with multiprocessing.Pool(processes=num_processes) as pool: extract_func = partial(extract_page_range, file_path) results = [] for idx, result in enumerate(pool.starmap(extract_func, ranges)): results.append(result) if progress_callback: processed_pages = min((idx + 1) * pages_per_process, total_pages) progress_callback(processed_pages, total_pages) return "\n\n".join(filter(None, results)) except Exception as e: logger.error(f"PDF processing error: {e}") return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_all_pages(file_path, progress_callback) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except Exception: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: logger.error(f"Error processing {file_path}: {e}") return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: logger.error(f"[{tag}] GPU/CPU monitor failed: {e}") def clean_response(text: str) -> str: """Clean TxAgent response to group findings under tool-derived headings.""" text = sanitize_utf8(text) text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) tool_to_heading = { "get_abuse_info_by_drug_name": "Drugs", "get_dependence_info_by_drug_name": "Drugs", "get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs", "get_info_for_patients_by_drug_name": "Drugs", } sections = {} current_section = None current_tool = None lines = text.splitlines() for line in lines: line = line.strip() if not line: continue tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line) if tool_match: current_tool = tool_match.group(1) continue section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up|Drugs)", line) if section_match: current_section = section_match.group(1) if current_section not in sections: sections[current_section] = [] continue finding_match = re.match(r"-\s*.+", line) if finding_match and current_section and not re.match(r"-\s*No issues identified", line): if current_tool and current_tool in tool_to_heading: heading = tool_to_heading[current_tool] if heading not in sections: sections[heading] = [] sections[heading].append(line) else: sections[current_section].append(line) cleaned = [] for heading, findings in sections.items(): if findings: cleaned.append(f"### {heading}\n" + "\n".join(findings)) text = "\n\n".join(cleaned).strip() if not text: text = "" return text def init_agent(): logger.info("Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=2, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("Agent Ready") return agent def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str, prompt_template: str) -> tuple: """Process a single chunk with error handling and caching.""" if not chunk.strip(): logger.warning(f"Chunk {chunk_idx} is empty, skipping...") return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" chunk_id = chunk_hash(chunk, prompt_template) chunk_cache_path = os.path.join(cache_path, f"chunk_{chunk_id}.txt") if os.path.exists(chunk_cache_path): with open(chunk_cache_path, "r", encoding="utf-8") as f: logger.info(f"Cache hit for chunk {chunk_idx}") return chunk_idx, f.read() prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:1000]) # Truncate to avoid token limits chunk_response = "" try: for chunk_output in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=2048, call_agent=False, conversation=[], ): if chunk_output is None: continue if isinstance(chunk_output, list): for m in chunk_output: if hasattr(m, 'content') and m.content: cleaned = clean_response(m.content) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" elif isinstance(chunk_output, str) and chunk_output.strip(): cleaned = clean_response(chunk_output) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" except Exception as e: logger.error(f"Error processing chunk {chunk_idx}: {e}") return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nError occurred: {str(e)}\n\n" if chunk_response: with open(chunk_cache_path, "w", encoding="utf-8") as f: f.write(chunk_response) return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") max_chunks_input = gr.Slider(minimum=1, maximum=50, value=5, step=1, label="Max Chunks to Analyze") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Full Report") prompt_template = """ You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include: - Clinical context (why the issue was missed or relevant details from the record). - Potential risks if unaddressed (e.g., disease progression, adverse events). - Actionable recommendations (e.g., tests, referrals, medication adjustments). Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses. Example Output: ### Drugs [TOOL: get_abuse_info_by_drug_name] - [Finding placeholder for drug-related issue] ### Missed Diagnoses - [Finding placeholder for missed diagnosis] ### Incomplete Assessments - [Finding placeholder for incomplete assessment] ### Urgent Follow-up - [Finding placeholder for urgent follow-up] Patient Record Excerpt (Chunk {0} of {1}): {chunk} """ def analyze(message: str, history: List[dict], files: List, max_chunks: int): history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": "⏳ Extracting text from files..."}) yield history, None extracted = "" file_hash_value = "" if files: total_pages = 0 processed_pages = 0 def update_extraction_progress(current, total): nonlocal processed_pages, total_pages processed_pages = current total_pages = total animation = ["🌀", "🔄", "⚙️", "🔃"][(int(time.time() * 2) % 4)] history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"} return history, None with ThreadPoolExecutor(max_workers=6) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join(results) file_hash_value = file_hash(files[0].name) if files else "" history.pop() history.append({"role": "assistant", "content": "✅ Text extraction complete."}) yield history, None chunk_size = 1000 # Reduced for speed chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] chunks = chunks[:max_chunks] # Limit to max_chunks total_chunks = len(chunks) combined_response = "" if not chunks: history.append({"role": "assistant", "content": "No content to analyze."}) yield history, None return try: # Sequential processing to avoid VLLM error for chunk_idx, chunk in enumerate(chunks, 1): animation = ["🔍", "📊", "🧠", "🔎"][(int(time.time() * 2) % 4)] history.append({"role": "assistant", "content": f"Analyzing chunk {chunk_idx}/{total_chunks}... {animation}"}) yield history, None _, chunk_response = process_chunk(agent, chunk, chunk_idx, total_chunks, file_cache_dir, prompt_template) combined_response += chunk_response history[-1] = {"role": "assistant", "content": combined_response.strip()} yield history, None if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")): history[-1]["content"] = combined_response.strip() else: history.append({"role": "assistant", "content": "No oversights identified in the provided records."}) report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None if report_path: with open(report_path, "w", encoding="utf-8") as f: f.write(combined_response) yield history, report_path if report_path and os.path.exists(report_path) else None except Exception as e: logger.error(f"Analysis error: {e}") history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) yield history, None send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output]) msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output]) return demo if __name__ == "__main__": logger.info("Launching app...") agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False )