|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Optional |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
from datetime import datetime |
|
import tiktoken |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MEDICAL_KEYWORDS = { |
|
'diagnosis', 'assessment', 'plan', 'results', 'medications', |
|
'allergies', 'summary', 'impression', 'findings', 'recommendations', |
|
'conclusion', 'history', 'examination', 'progress', 'discharge' |
|
} |
|
TOKENIZER = "cl100k_base" |
|
|
|
MAX_MODEL_LEN = 4096 |
|
|
|
TARGET_CHUNK_TOKENS = 1200 |
|
PROMPT_RESERVE = 100 |
|
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ===" |
|
|
|
|
|
def log_system_usage(tag=""): |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") |
|
except Exception as e: |
|
print(f"[{tag}] GPU/CPU monitor failed: {e}") |
|
|
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
|
|
def count_tokens(text: str) -> int: |
|
encoding = tiktoken.get_encoding(TOKENIZER) |
|
return len(encoding.encode(text)) |
|
|
|
|
|
def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]: |
|
try: |
|
text_chunks = [] |
|
total_pages = 0 |
|
total_tokens = 0 |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
for i, page in enumerate(pdf.pages): |
|
page_text = page.extract_text() or "" |
|
lower_text = page_text.lower() |
|
header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n" if any( |
|
re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS |
|
) else f"\n=== Page {i+1} ===\n" |
|
text_chunks.append(header + page_text.strip()) |
|
total_tokens += count_tokens(header) + count_tokens(page_text) |
|
return "\n".join(text_chunks), total_pages, total_tokens |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}", 0, 0 |
|
|
|
|
|
def convert_file_to_json(file_path: str, file_type: str) -> str: |
|
try: |
|
h = file_hash(file_path) |
|
cache_path = os.path.join(file_cache_dir, f"{h}.json") |
|
if os.path.exists(cache_path): |
|
return open(cache_path, "r", encoding="utf-8").read() |
|
if file_type == "pdf": |
|
text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path) |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"content": text, |
|
"total_pages": total_pages, |
|
"total_tokens": total_tokens, |
|
"status": "complete" |
|
}) |
|
elif file_type == "csv": |
|
chunks = [] |
|
for chunk in pd.read_csv( |
|
file_path, encoding_errors="replace", header=None, dtype=str, |
|
skip_blank_lines=False, on_bad_lines="skip", chunksize=1000 |
|
): |
|
chunks.append(chunk.fillna("").astype(str).values.tolist()) |
|
content = [item for sub in chunks for item in sub] |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"total_tokens": count_tokens(str(content)) |
|
}) |
|
elif file_type in ["xls", "xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
except: |
|
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) |
|
content = df.fillna("" ).astype(str).values.tolist() |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"total_tokens": count_tokens(str(content)) |
|
}) |
|
else: |
|
result = json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
return result |
|
except Exception as e: |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
|
|
def clean_response(text: str) -> str: |
|
text = sanitize_utf8(text) |
|
patterns = [ |
|
r"\[TOOL_CALLS\].*", |
|
r"\['get_[^\]]+\']\n?", |
|
r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", |
|
r"To analyze the medical records for clinical oversights.*?\n" |
|
] |
|
for pat in patterns: |
|
text = re.sub(pat, "", text, flags=re.DOTALL) |
|
return re.sub(r"\n{3,}", "\n\n", text).strip() |
|
|
|
|
|
def format_final_report(analysis_results: List[str], filename: str) -> str: |
|
report = [ |
|
"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS", |
|
f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", |
|
f"File: {filename}", |
|
"=" * 80 |
|
] |
|
sections = {s: [] for s in [ |
|
"CRITICAL FINDINGS", "MISSED DIAGNOSES", "MEDICATION ISSUES", |
|
"ASSESSMENT GAPS", "FOLLOW-UP RECOMMENDATIONS" |
|
]} |
|
for res in analysis_results: |
|
for sec in sections: |
|
m = re.search( |
|
rf"{re.escape(sec)}:?\s* |
|
(.+?)(?= |
|
\*| |
|
|
|
|$)", |
|
res, re.IGNORECASE | re.DOTALL |
|
) |
|
if m: |
|
content = m.group(1).strip() |
|
if content and content not in sections[sec]: |
|
sections[sec].append(content) |
|
if sections["CRITICAL FINDINGS"]: |
|
report.append("\n๐จ **CRITICAL FINDINGS** ๐จ") |
|
report.extend(f"\n{c}" for c in sections["CRITICAL FINDINGS"]) |
|
for sec, conts in sections.items(): |
|
if sec != "CRITICAL FINDINGS" and conts: |
|
report.append(f"\n**{sec}**") |
|
report.extend(f"\n{c}" for c in conts) |
|
if not any(sections.values()): |
|
report.append("\nNo significant clinical oversights identified.") |
|
report.append("\n" + "="*80) |
|
report.append("END OF REPORT") |
|
return "\n".join(report) |
|
|
|
|
|
def split_content_by_tokens(content: str, max_tokens: int) -> List[str]: |
|
paragraphs = re.split(r"\n\s*\n", content) |
|
chunks, current, curr_toks = [], [], 0 |
|
for para in paragraphs: |
|
toks = count_tokens(para) |
|
if toks > max_tokens: |
|
for sent in re.split(r'(?<=[.!?])\s+', para): |
|
sent_toks = count_tokens(sent) |
|
if curr_toks + sent_toks > max_tokens: |
|
chunks.append("\n\n".join(current)) |
|
current, curr_toks = [sent], sent_toks |
|
else: |
|
current.append(sent) |
|
curr_toks += sent_toks |
|
elif curr_toks + toks > max_tokens: |
|
chunks.append("\n\n".join(current)) |
|
current, curr_toks = [para], toks |
|
else: |
|
current.append(para) |
|
curr_toks += toks |
|
if current: |
|
chunks.append("\n\n".join(current)) |
|
return chunks |
|
|
|
|
|
def init_agent(): |
|
print("๐ Initializing model...") |
|
log_system_usage("Before Load") |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=2, |
|
seed=100, |
|
additional_default_tools=[] |
|
) |
|
agent.init_model() |
|
log_system_usage("After Load") |
|
print("โ
Agent Ready") |
|
return agent |
|
|
|
|
|
def analyze_complete_document(content: str, filename: str, agent: TxAgent, temperature: float = 0.3) -> str: |
|
base_prompt = ( |
|
"Analyze for:\n1. Critical\n2. Missed DX\n3. Med issues\n4. Gaps\n5. Follow-up\n\nContent:\n" |
|
) |
|
prompt_toks = count_tokens(base_prompt) |
|
max_chunk_toks = MAX_MODEL_LEN - prompt_toks - PROMPT_RESERVE |
|
chunks = split_content_by_tokens(content, max_chunk_toks) |
|
results = [] |
|
for i, chunk in enumerate(chunks): |
|
try: |
|
prompt = base_prompt + chunk |
|
response = "" |
|
for out in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=temperature, |
|
max_new_tokens=300, |
|
max_token=MAX_MODEL_LEN, |
|
call_agent=False, |
|
conversation=[] |
|
): |
|
if out: |
|
if isinstance(out, list): |
|
for m in out: |
|
response += clean_response(m.content if hasattr(m, 'content') else str(m)) |
|
else: |
|
response += clean_response(str(out)) |
|
if response: |
|
results.append(response) |
|
except Exception as e: |
|
print(f"Error processing chunk {i}: {e}") |
|
return format_final_report(results, filename) |
|
|
|
|
|
def create_ui(agent): |
|
with gr.Blocks(title="Clinical Oversight Assistant") as demo: |
|
gr.Markdown(""" |
|
# ๐ฉบ Clinical Oversight Assistant |
|
Analyze medical records for potential oversights and generate comprehensive reports |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") |
|
msg_input = gr.Textbox(label="Analysis Focus (optional)") |
|
temperature = gr.Slider(0.1, 1.0, value=0.3, label="Analysis Strictness") |
|
send_btn = gr.Button("Analyze Documents", variant="primary") |
|
clear_btn = gr.Button("Clear All") |
|
status = gr.Textbox(label="Status", interactive=False) |
|
with gr.Column(): |
|
report_output = gr.Textbox(label="Report", lines=20, interactive=False) |
|
data_preview = gr.Dataframe(headers=["File", "Snippet"], interactive=False) |
|
download_output = gr.File(label="Download Report") |
|
def analyze(files, msg, temp): |
|
if not files: |
|
yield "", None, "โ ๏ธ Please upload files.", None |
|
return |
|
yield "", None, "โณ Processing...", None |
|
previews = [] |
|
contents = [] |
|
for f in files: |
|
res = json.loads(sanitize_utf8(convert_file_to_json(f.name, os.path.splitext(f.name)[1][1:].lower()))) |
|
if "content" in res: |
|
previews.append([res["filename"], res["content"][:200] + "..."]) |
|
contents.append(res["content"]) |
|
yield "", None, f"๐ Analyzing {len(contents)} docs...", previews |
|
combined = "\n".join(contents) |
|
report = analyze_complete_document(combined, "+".join([os.path.basename(f.name) for f in files]), agent, temp) |
|
file_hash_val = hashlib.md5(combined.encode()).hexdigest() |
|
path = os.path.join(report_dir, f"{file_hash_val}_report.txt") |
|
with open(path, "w", encoding="utf-8") as rd: |
|
rd.write(report) |
|
yield report, path, "โ
Analysis complete!", previews |
|
send_btn.click(analyze, [file_upload, msg_input, temperature], [report_output, download_output, status, data_preview]) |
|
clear_btn.click(lambda: (None, None, "", None), None, [report_output, download_output, status, data_preview]) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("๐ Launching app...") |
|
try: |
|
import tiktoken |
|
except ImportError: |
|
subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"]) |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue(api_open=False, max_size=20).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
share=False, |
|
allowed_paths=[report_dir] |
|
) |
|
|