import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List, Tuple, Optional from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess from datetime import datetime import tiktoken # Persistent directory setup persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) # Environment variables os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" # Add src to path current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Constants MEDICAL_KEYWORDS = { 'diagnosis', 'assessment', 'plan', 'results', 'medications', 'allergies', 'summary', 'impression', 'findings', 'recommendations', 'conclusion', 'history', 'examination', 'progress', 'discharge' } TOKENIZER = "cl100k_base" # Increase max model length to support larger contexts MAX_MODEL_LEN = 4096 # Default chunk target tokens TARGET_CHUNK_TOKENS = 1200 PROMPT_RESERVE = 100 MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ===" def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: print(f"[{tag}] GPU/CPU monitor failed: {e}") def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def count_tokens(text: str) -> int: encoding = tiktoken.get_encoding(TOKENIZER) return len(encoding.encode(text)) def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]: try: text_chunks = [] total_pages = 0 total_tokens = 0 with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) for i, page in enumerate(pdf.pages): page_text = page.extract_text() or "" lower_text = page_text.lower() header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n" if any( re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS ) else f"\n=== Page {i+1} ===\n" text_chunks.append(header + page_text.strip()) total_tokens += count_tokens(header) + count_tokens(page_text) return "\n".join(text_chunks), total_pages, total_tokens except Exception as e: return f"PDF processing error: {str(e)}", 0, 0 def convert_file_to_json(file_path: str, file_type: str) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): return open(cache_path, "r", encoding="utf-8").read() if file_type == "pdf": text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path) result = json.dumps({ "filename": os.path.basename(file_path), "content": text, "total_pages": total_pages, "total_tokens": total_tokens, "status": "complete" }) elif file_type == "csv": chunks = [] for chunk in pd.read_csv( file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip", chunksize=1000 ): chunks.append(chunk.fillna("").astype(str).values.tolist()) content = [item for sub in chunks for item in sub] result = json.dumps({ "filename": os.path.basename(file_path), "rows": content, "total_tokens": count_tokens(str(content)) }) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("" ).astype(str).values.tolist() result = json.dumps({ "filename": os.path.basename(file_path), "rows": content, "total_tokens": count_tokens(str(content)) }) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def clean_response(text: str) -> str: text = sanitize_utf8(text) patterns = [ r"\[TOOL_CALLS\].*", r"\['get_[^\]]+\']\n?", r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", r"To analyze the medical records for clinical oversights.*?\n" ] for pat in patterns: text = re.sub(pat, "", text, flags=re.DOTALL) return re.sub(r"\n{3,}", "\n\n", text).strip() def format_final_report(analysis_results: List[str], filename: str) -> str: report = [ "COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS", f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", f"File: {filename}", "=" * 80 ] sections = {s: [] for s in [ "CRITICAL FINDINGS", "MISSED DIAGNOSES", "MEDICATION ISSUES", "ASSESSMENT GAPS", "FOLLOW-UP RECOMMENDATIONS" ]} for res in analysis_results: for sec in sections: m = re.search( rf"{re.escape(sec)}:?\s* (.+?)(?= \*| |$)", res, re.IGNORECASE | re.DOTALL ) if m: content = m.group(1).strip() if content and content not in sections[sec]: sections[sec].append(content) if sections["CRITICAL FINDINGS"]: report.append("\n🚨 **CRITICAL FINDINGS** 🚨") report.extend(f"\n{c}" for c in sections["CRITICAL FINDINGS"]) for sec, conts in sections.items(): if sec != "CRITICAL FINDINGS" and conts: report.append(f"\n**{sec}**") report.extend(f"\n{c}" for c in conts) if not any(sections.values()): report.append("\nNo significant clinical oversights identified.") report.append("\n" + "="*80) report.append("END OF REPORT") return "\n".join(report) def split_content_by_tokens(content: str, max_tokens: int) -> List[str]: paragraphs = re.split(r"\n\s*\n", content) chunks, current, curr_toks = [], [], 0 for para in paragraphs: toks = count_tokens(para) if toks > max_tokens: for sent in re.split(r'(?<=[.!?])\s+', para): sent_toks = count_tokens(sent) if curr_toks + sent_toks > max_tokens: chunks.append("\n\n".join(current)) current, curr_toks = [sent], sent_toks else: current.append(sent) curr_toks += sent_toks elif curr_toks + toks > max_tokens: chunks.append("\n\n".join(current)) current, curr_toks = [para], toks else: current.append(para) curr_toks += toks if current: chunks.append("\n\n".join(current)) return chunks def init_agent(): print("šŸ” Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=2, seed=100, additional_default_tools=[] ) agent.init_model() log_system_usage("After Load") print("āœ… Agent Ready") return agent def analyze_complete_document(content: str, filename: str, agent: TxAgent, temperature: float = 0.3) -> str: base_prompt = ( "Analyze for:\n1. Critical\n2. Missed DX\n3. Med issues\n4. Gaps\n5. Follow-up\n\nContent:\n" ) prompt_toks = count_tokens(base_prompt) max_chunk_toks = MAX_MODEL_LEN - prompt_toks - PROMPT_RESERVE chunks = split_content_by_tokens(content, max_chunk_toks) results = [] for i, chunk in enumerate(chunks): try: prompt = base_prompt + chunk response = "" for out in agent.run_gradio_chat( message=prompt, history=[], temperature=temperature, max_new_tokens=300, max_token=MAX_MODEL_LEN, call_agent=False, conversation=[] ): if out: if isinstance(out, list): for m in out: response += clean_response(m.content if hasattr(m, 'content') else str(m)) else: response += clean_response(str(out)) if response: results.append(response) except Exception as e: print(f"Error processing chunk {i}: {e}") return format_final_report(results, filename) def create_ui(agent): with gr.Blocks(title="Clinical Oversight Assistant") as demo: gr.Markdown(""" # 🩺 Clinical Oversight Assistant Analyze medical records for potential oversights and generate comprehensive reports """) with gr.Row(): with gr.Column(): file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") msg_input = gr.Textbox(label="Analysis Focus (optional)") temperature = gr.Slider(0.1, 1.0, value=0.3, label="Analysis Strictness") send_btn = gr.Button("Analyze Documents", variant="primary") clear_btn = gr.Button("Clear All") status = gr.Textbox(label="Status", interactive=False) with gr.Column(): report_output = gr.Textbox(label="Report", lines=20, interactive=False) data_preview = gr.Dataframe(headers=["File", "Snippet"], interactive=False) download_output = gr.File(label="Download Report") def analyze(files, msg, temp): if not files: yield "", None, "āš ļø Please upload files.", None return yield "", None, "ā³ Processing...", None previews = [] contents = [] for f in files: res = json.loads(sanitize_utf8(convert_file_to_json(f.name, os.path.splitext(f.name)[1][1:].lower()))) if "content" in res: previews.append([res["filename"], res["content"][:200] + "..."]) contents.append(res["content"]) yield "", None, f"šŸ” Analyzing {len(contents)} docs...", previews combined = "\n".join(contents) report = analyze_complete_document(combined, "+".join([os.path.basename(f.name) for f in files]), agent, temp) file_hash_val = hashlib.md5(combined.encode()).hexdigest() path = os.path.join(report_dir, f"{file_hash_val}_report.txt") with open(path, "w", encoding="utf-8") as rd: rd.write(report) yield report, path, "āœ… Analysis complete!", previews send_btn.click(analyze, [file_upload, msg_input, temperature], [report_output, download_output, status, data_preview]) clear_btn.click(lambda: (None, None, "", None), None, [report_output, download_output, status, data_preview]) return demo if __name__ == "__main__": print("šŸš€ Launching app...") try: import tiktoken except ImportError: subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"]) agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False, max_size=20).launch( server_name="0.0.0.0", server_port=7860, show_error=True, share=False, allowed_paths=[report_dir] )