|
import sys |
|
import os |
|
import gradio as gr |
|
from typing import List |
|
import hashlib |
|
import time |
|
import json |
|
import re |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from threading import Thread |
|
import pandas as pd |
|
import pdfplumber |
|
|
|
|
|
os.environ.update({ |
|
"HF_HOME": "/data/hf_cache", |
|
"VLLM_CACHE_DIR": "/data/vllm_cache", |
|
"TOKENIZERS_PARALLELISM": "false", |
|
"CUDA_LAUNCH_BLOCKING": "1" |
|
}) |
|
|
|
|
|
os.makedirs("/data/hf_cache", exist_ok=True) |
|
os.makedirs("/data/tool_cache", exist_ok=True) |
|
os.makedirs("/data/file_cache", exist_ok=True) |
|
os.makedirs("/data/reports", exist_ok=True) |
|
os.makedirs("/data/vllm_cache", exist_ok=True) |
|
|
|
|
|
def lazy_load_agent(): |
|
from txagent.txagent import TxAgent |
|
|
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=8, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
|
|
agent = None |
|
def preload_agent(): |
|
global agent |
|
agent = lazy_load_agent() |
|
|
|
Thread(target=preload_agent).start() |
|
|
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def extract_priority_pages(file_path: str, max_pages: int = 10) -> str: |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
return "\n\n".join( |
|
f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" |
|
for i, page in enumerate(pdf.pages[:max_pages]) |
|
) |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def process_file(file_path: str, file_type: str) -> str: |
|
try: |
|
h = file_hash(file_path) |
|
cache_path = f"/data/file_cache/{h}.json" |
|
|
|
if os.path.exists(cache_path): |
|
with open(cache_path, "r", encoding="utf-8") as f: |
|
return f.read() |
|
|
|
if file_type == "pdf": |
|
content = extract_priority_pages(file_path) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": content}) |
|
elif file_type == "csv": |
|
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str) |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()}) |
|
elif file_type in ["xls", "xlsx"]: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()}) |
|
else: |
|
return json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
return result |
|
|
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
def format_response(response: str) -> str: |
|
response = response.replace("[TOOL_CALLS]", "").strip() |
|
if "Based on the medical records provided" in response: |
|
parts = response.split("Based on the medical records provided") |
|
response = "Based on the medical records provided" + parts[-1] |
|
|
|
replacements = { |
|
"1. **Missed Diagnoses**:": "### 🔍 Missed Diagnoses", |
|
"2. **Medication Conflicts**:": "\n### 💊 Medication Conflicts", |
|
"3. **Incomplete Assessments**:": "\n### 📋 Incomplete Assessments", |
|
"4. **Abnormal Results Needing Follow-up**:": "\n### ⚠️ Abnormal Results Needing Follow-up", |
|
"Overall, the patient's medical records": "\n### 📝 Overall Assessment" |
|
} |
|
|
|
for old, new in replacements.items(): |
|
response = response.replace(old, new) |
|
|
|
return response |
|
|
|
def analyze_files(message: str, history: List, files: List): |
|
try: |
|
|
|
while agent is None: |
|
time.sleep(0.1) |
|
|
|
|
|
history.append([message, None]) |
|
yield history, None |
|
|
|
|
|
extracted_data = "" |
|
if files: |
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [executor.submit(process_file, f.name, f.name.split(".")[-1].lower()) |
|
for f in files if hasattr(f, 'name')] |
|
extracted_data = "\n".join(f.result() for f in as_completed(futures)) |
|
|
|
prompt = f"""Review these medical records: |
|
{extracted_data[:10000]} |
|
|
|
Identify: |
|
1. Potential missed diagnoses |
|
2. Medication conflicts |
|
3. Incomplete assessments |
|
4. Abnormal results needing follow-up |
|
|
|
Analysis:""" |
|
|
|
response = "" |
|
for chunk in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=800, |
|
max_token=3000 |
|
): |
|
if isinstance(chunk, str): |
|
response += chunk |
|
elif isinstance(chunk, list): |
|
response += "".join(getattr(c, 'content', '') for c in chunk) |
|
|
|
formatted = format_response(response) |
|
if formatted.strip(): |
|
history[-1][1] = formatted |
|
yield history, None |
|
|
|
final_output = format_response(response) or "No clear oversights identified." |
|
history[-1][1] = final_output |
|
yield history, None |
|
|
|
except Exception as e: |
|
history[-1][1] = f"❌ Error: {str(e)}" |
|
yield history, None |
|
|
|
|
|
with gr.Blocks(title="Clinical Oversight Assistant", css=""" |
|
.gradio-container { |
|
max-width: 1200px !important; |
|
margin: auto; |
|
} |
|
.container { |
|
max-width: 1200px !important; |
|
} |
|
.chatbot { |
|
min-height: 500px; |
|
} |
|
""") as demo: |
|
gr.Markdown(""" |
|
<div style='text-align: center; margin-bottom: 20px;'> |
|
<h1 style='margin-bottom: 10px;'>🩺 Clinical Oversight Assistant</h1> |
|
<p>Upload medical records to analyze for potential oversights in patient care</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=400): |
|
file_upload = gr.File( |
|
label="Upload Medical Records", |
|
file_types=[".pdf", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple", |
|
height=100 |
|
) |
|
query = gr.Textbox( |
|
label="Your Query", |
|
placeholder="Ask about potential oversights...", |
|
lines=3 |
|
) |
|
submit = gr.Button("Analyze", variant="primary") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["What potential diagnoses might have been missed?"], |
|
["Are there any medication conflicts I should be aware of?"], |
|
["What assessments appear incomplete in these records?"] |
|
], |
|
inputs=query, |
|
label="Example Queries" |
|
) |
|
|
|
with gr.Column(scale=2, min_width=600): |
|
chatbot = gr.Chatbot( |
|
label="Analysis Results", |
|
height=600, |
|
bubble_full_width=False, |
|
show_copy_button=True |
|
) |
|
|
|
submit.click( |
|
analyze_files, |
|
inputs=[query, chatbot, file_upload], |
|
outputs=[chatbot, gr.File(visible=False)] |
|
) |
|
|
|
query.submit( |
|
analyze_files, |
|
inputs=[query, chatbot, file_upload], |
|
outputs=[chatbot, gr.File(visible=False)] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(concurrency_count=1).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True |
|
) |