File size: 8,131 Bytes
5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 e24be23 5f7a1a1 1da2cfd 5f7a1a1 1da2cfd dae38a2 5f7a1a1 dae38a2 5f7a1a1 dae38a2 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 1da2cfd 5f7a1a1 1da2cfd e24be23 5f7a1a1 dae38a2 5f7a1a1 7323cb6 5f7a1a1 1da2cfd 5f7a1a1 1da2cfd 5f7a1a1 dae38a2 5f7a1a1 dae38a2 7323cb6 dae38a2 5f7a1a1 7323cb6 5f7a1a1 e24be23 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 7323cb6 5f7a1a1 e24be23 5f7a1a1 e24be23 5f7a1a1 7323cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import sys
import os
import gradio as gr
from typing import List
import hashlib
import time
import json
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread
import pandas as pd
import pdfplumber
# Optimized environment setup
os.environ.update({
"HF_HOME": "/data/hf_cache",
"VLLM_CACHE_DIR": "/data/vllm_cache",
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
# Create cache directories if they don't exist
os.makedirs("/data/hf_cache", exist_ok=True)
os.makedirs("/data/tool_cache", exist_ok=True)
os.makedirs("/data/file_cache", exist_ok=True)
os.makedirs("/data/reports", exist_ok=True)
os.makedirs("/data/vllm_cache", exist_ok=True)
# Lazy loading of heavy dependencies
def lazy_load_agent():
from txagent.txagent import TxAgent
# Initialize agent with optimized settings
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
# Pre-load the agent in a separate thread
agent = None
def preload_agent():
global agent
agent = lazy_load_agent()
Thread(target=preload_agent).start()
# File processing functions
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 10) -> str:
try:
with pdfplumber.open(file_path) as pdf:
return "\n\n".join(
f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
for i, page in enumerate(pdf.pages[:max_pages])
)
except Exception as e:
return f"PDF processing error: {str(e)}"
def process_file(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = f"/data/file_cache/{h}.json"
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
content = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": content})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str)
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
elif file_type in ["xls", "xlsx"]:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": str(e)})
def format_response(response: str) -> str:
response = response.replace("[TOOL_CALLS]", "").strip()
if "Based on the medical records provided" in response:
parts = response.split("Based on the medical records provided")
response = "Based on the medical records provided" + parts[-1]
replacements = {
"1. **Missed Diagnoses**:": "### π Missed Diagnoses",
"2. **Medication Conflicts**:": "\n### π Medication Conflicts",
"3. **Incomplete Assessments**:": "\n### π Incomplete Assessments",
"4. **Abnormal Results Needing Follow-up**:": "\n### β οΈ Abnormal Results Needing Follow-up",
"Overall, the patient's medical records": "\n### π Overall Assessment"
}
for old, new in replacements.items():
response = response.replace(old, new)
return response
def analyze_files(message: str, history: List, files: List):
try:
# Wait for agent to load if not ready
while agent is None:
time.sleep(0.1)
# Append user message to history in correct format
history.append([message, None])
yield history, None
# Process files in parallel
extracted_data = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(process_file, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')]
extracted_data = "\n".join(f.result() for f in as_completed(futures))
prompt = f"""Review these medical records:
{extracted_data[:10000]}
Identify:
1. Potential missed diagnoses
2. Medication conflicts
3. Incomplete assessments
4. Abnormal results needing follow-up
Analysis:"""
response = ""
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=800,
max_token=3000
):
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join(getattr(c, 'content', '') for c in chunk)
formatted = format_response(response)
if formatted.strip():
history[-1][1] = formatted
yield history, None
final_output = format_response(response) or "No clear oversights identified."
history[-1][1] = final_output
yield history, None
except Exception as e:
history[-1][1] = f"β Error: {str(e)}"
yield history, None
# Create optimized UI with better layout
with gr.Blocks(title="Clinical Oversight Assistant", css="""
.gradio-container {
max-width: 1200px !important;
margin: auto;
}
.container {
max-width: 1200px !important;
}
.chatbot {
min-height: 500px;
}
""") as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 20px;'>
<h1 style='margin-bottom: 10px;'>π©Ί Clinical Oversight Assistant</h1>
<p>Upload medical records to analyze for potential oversights in patient care</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1, min_width=400):
file_upload = gr.File(
label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
height=100
)
query = gr.Textbox(
label="Your Query",
placeholder="Ask about potential oversights...",
lines=3
)
submit = gr.Button("Analyze", variant="primary")
gr.Examples(
examples=[
["What potential diagnoses might have been missed?"],
["Are there any medication conflicts I should be aware of?"],
["What assessments appear incomplete in these records?"]
],
inputs=query,
label="Example Queries"
)
with gr.Column(scale=2, min_width=600):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True
)
submit.click(
analyze_files,
inputs=[query, chatbot, file_upload],
outputs=[chatbot, gr.File(visible=False)]
)
query.submit(
analyze_files,
inputs=[query, chatbot, file_upload],
outputs=[chatbot, gr.File(visible=False)]
)
if __name__ == "__main__":
demo.queue(concurrency_count=1).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |