File size: 3,921 Bytes
1777737
dfe34bb
1777737
728def5
 
dfe34bb
1777737
dfe34bb
0e7a2f6
dfe34bb
728def5
1777737
dfe34bb
1777737
dfe34bb
 
1777737
dfe34bb
728def5
1777737
dfe34bb
 
 
1777737
dfe34bb
 
 
 
 
 
 
 
 
728def5
dfe34bb
3492c23
1777737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492c23
 
1777737
dfe34bb
0e7a2f6
 
 
dfe34bb
4a6ed35
1777737
dfe34bb
1777737
dfe34bb
1777737
 
dfe34bb
1777737
0e7a2f6
 
 
dfe34bb
4a6ed35
3492c23
 
 
 
 
 
 
 
1777737
3492c23
 
 
88317c7
 
1777737
 
 
 
88317c7
1777737
3492c23
0e7a2f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
import os
import sys
import pandas as pd
import pdfplumber

# Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent


def extract_all_text_from_csv(file_path):
    try:
        df = pd.read_csv(file_path, low_memory=False)
        return df.to_string(index=False)
    except Exception as e:
        return f"Error parsing CSV: {e}"


def extract_all_text_from_pdf(file_path):
    extracted = []
    try:
        with pdfplumber.open(file_path) as pdf:
            for page in pdf.pages:
                tables = page.extract_tables()
                for table in tables:
                    for row in table:
                        if any(row):
                            extracted.append("\t".join([cell or "" for cell in row]))
        return "\n".join(extracted)
    except Exception as e:
        return f"Error parsing PDF: {e}"


def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🧠 CPS: Clinical Processing System</h1>")
        chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")

        # Hidden file upload, attached to input bar
        with gr.Row():
            uploaded_files = gr.File(
                label="📎", file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"],
                file_count="multiple", visible=False
            )

            with gr.Column(scale=10):
                message_input = gr.Textbox(
                    placeholder="Type your medical question or upload files...", show_label=False, scale=10
                )

            with gr.Column(scale=1, min_width=60):
                file_icon = gr.UploadButton("📎", file_types=[".pdf", ".csv", ".docx", ".txt", ".jpg", ".png"], file_count="multiple")

            send_button = gr.Button("Send", variant="primary")

        conversation_state = gr.State([])

        def handle_chat(message, history, conversation, new_files):
            context = (
                "You are a clinical AI reviewing medical interview or form data. "
                "Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
                "Don't answer yet — just reason."
            )

            if new_files:
                extracted_text = ""
                for file in new_files:
                    path = file.name
                    if path.endswith(".csv"):
                        extracted_text += extract_all_text_from_csv(path) + "\n"
                    elif path.endswith(".pdf"):
                        extracted_text += extract_all_text_from_pdf(path) + "\n"
                    else:
                        extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"

                message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."

            generator = agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_token=8192,
                call_agent=False,
                conversation=conversation,
                uploaded_files=new_files,
                max_round=30
            )
            for update in generator:
                yield update

        # Bind send logic
        file_icon.upload(fn=None, inputs=[], outputs=[uploaded_files])
        send_button.click(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
        message_input.submit(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)

        gr.Examples([["Upload your medical form and ask what the doctor might’ve missed."]], inputs=message_input)

    return demo