File size: 7,847 Bytes
f75a23b f394b25 d184610 a57b988 f394b25 3ed8d49 a57b988 d16299c 1c5bd8e d14630a d8282f1 3ed8d49 f6e551c d16299c f6e551c a57b988 f6e551c 3ed8d49 f6e551c 4bfbcac 0fb33af f75a23b 3ed8d49 1244d40 7a8204e f6e551c d16299c f6e551c d16299c a57b988 3ed8d49 ad85a12 6f1a22c 3ed8d49 6f1a22c 3ed8d49 ad85a12 3ed8d49 ad85a12 3ed8d49 ad85a12 3ed8d49 ad85a12 a57b988 0e6914c 3ed8d49 a57b988 3ed8d49 a57b988 3ed8d49 a57b988 3ed8d49 a57b988 3ed8d49 a57b988 ca6d5de 6762641 ca6d5de 6762641 ca6d5de 6762641 a57b988 3ed8d49 ef6f12c 3ed8d49 ef6f12c 3ed8d49 6e4e750 3ed8d49 ef6f12c 3ed8d49 6e4e750 3ed8d49 ef6f12c 3ed8d49 6032958 3ed8d49 0fb33af a71a831 55e3db0 abd27cc d8282f1 a57b988 3ed8d49 d8282f1 abd27cc 3ed8d49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_obj: Union[str, os.PathLike, 'file']) -> str:
all_text = []
try:
xls = pd.ExcelFile(file_obj)
except Exception as e:
raise ValueError(f"โ Error reading Excel file: {e}")
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
effective_max = max_tokens - PROMPT_OVERHEAD
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
for line in lines:
t = estimate_tokens(line)
if curr_tokens + t > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
if len(chunks) >= max_chunks:
break
curr_chunk, curr_tokens = [line], t
else:
curr_chunk.append(line)
curr_tokens += t
if curr_chunk and len(chunks) < max_chunks:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
---
{chunk}
---
Respond in well-structured bullet points with medical reasoning.
"""
def init_agent():
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def stream_report(agent, input_file: Union[str, 'file'], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
accumulated_text = ""
try:
if input_file is None:
yield "โ Please upload a valid Excel file.", None, ""
return
if hasattr(input_file, "read"):
text = extract_text_from_excel(input_file)
elif isinstance(input_file, str) and os.path.exists(input_file):
text = extract_text_from_excel(input_file)
else:
raise ValueError("โ Invalid or missing file.")
chunks = split_text_into_chunks(text)
for i, chunk in enumerate(chunks):
prompt = build_prompt_from_text(chunk)
partial = ""
for res in agent.run_gradio_chat(
message=prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
if isinstance(res, str):
partial += res
elif hasattr(res, "content"):
partial += res.content
cleaned = clean_response(partial)
accumulated_text += f"\n\n๐ **Chunk {i+1}**:\n{cleaned}"
yield accumulated_text, None, ""
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + accumulated_text
final_report = ""
for res in agent.run_gradio_chat(
message=summary_prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
if isinstance(res, str):
final_report += res
elif hasattr(res, "content"):
final_report += res.content
cleaned = clean_response(final_report)
accumulated_text += f"\n\n๐ **Final Summary**:\n{cleaned}"
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# ๐ง Final Patient Report\n\n{cleaned}")
yield accumulated_text, report_path, cleaned
except Exception as e:
yield f"โ Error: {str(e)}", None, ""
def create_ui(agent):
with gr.Blocks(css="""
body {
background: #10141f;
color: #ffffff;
font-family: 'Inter', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
padding: 30px;
width: 100vw;
max-width: 100%;
border-radius: 0;
background-color: #1a1f2e;
}
.output-markdown {
background-color: #131720;
border-radius: 12px;
padding: 20px;
min-height: 600px;
overflow-y: auto;
border: 1px solid #2c3344;
}
.gr-button {
background: linear-gradient(135deg, #4b4ced, #37b6e9);
color: white;
font-weight: 500;
border: none;
padding: 10px 20px;
border-radius: 8px;
transition: background 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(135deg, #37b6e9, #4b4ced);
}
""") as demo:
gr.Markdown("""# ๐ง Clinical Reasoning Assistant
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
""")
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("Analyze")
report_output_markdown = gr.Markdown(elem_classes="output-markdown")
report_file = gr.File(label="Download Report", visible=False)
full_output = gr.State(value="")
analyze_btn.click(
fn=stream_report,
inputs=[file_upload, full_output],
outputs=[report_output_markdown, report_file, full_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=True)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)
|