Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,14 @@ import os
|
|
| 3 |
import pandas as pd
|
| 4 |
import json
|
| 5 |
import gradio as gr
|
| 6 |
-
from typing import List, Tuple,
|
| 7 |
import hashlib
|
| 8 |
import shutil
|
| 9 |
import re
|
| 10 |
from datetime import datetime
|
| 11 |
-
import time
|
| 12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 13 |
|
| 14 |
-
#
|
| 15 |
persistent_dir = "/data/hf_cache"
|
| 16 |
os.makedirs(persistent_dir, exist_ok=True)
|
| 17 |
|
|
@@ -20,29 +19,21 @@ tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
| 20 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
| 21 |
report_dir = os.path.join(persistent_dir, "reports")
|
| 22 |
|
| 23 |
-
for
|
| 24 |
-
os.makedirs(
|
| 25 |
|
| 26 |
os.environ["HF_HOME"] = model_cache_dir
|
| 27 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
| 28 |
|
| 29 |
-
|
| 30 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
| 31 |
-
sys.path.insert(0, src_path)
|
| 32 |
-
|
| 33 |
from txagent.txagent import TxAgent
|
| 34 |
|
| 35 |
-
# Constants
|
| 36 |
MAX_MODEL_TOKENS = 32768
|
| 37 |
MAX_CHUNK_TOKENS = 8192
|
| 38 |
MAX_NEW_TOKENS = 2048
|
| 39 |
PROMPT_OVERHEAD = 500
|
| 40 |
|
| 41 |
def clean_response(text: str) -> str:
|
| 42 |
-
try:
|
| 43 |
-
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
| 44 |
-
except UnicodeError:
|
| 45 |
-
text = text.encode('utf-8', 'replace').decode('utf-8')
|
| 46 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
| 47 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
| 48 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
@@ -51,286 +42,126 @@ def clean_response(text: str) -> str:
|
|
| 51 |
def estimate_tokens(text: str) -> int:
|
| 52 |
return len(text) // 3.5 + 1
|
| 53 |
|
| 54 |
-
def extract_text_from_excel(
|
| 55 |
all_text = []
|
| 56 |
try:
|
| 57 |
-
xls = pd.ExcelFile(
|
| 58 |
-
for sheet_name in xls.sheet_names:
|
| 59 |
-
df = xls.parse(sheet_name)
|
| 60 |
-
df = df.astype(str).fillna("")
|
| 61 |
-
rows = df.apply(lambda row: " | ".join(row), axis=1)
|
| 62 |
-
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
| 63 |
-
all_text.extend(sheet_text)
|
| 64 |
except Exception as e:
|
| 65 |
-
raise ValueError(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
return "\n".join(all_text)
|
| 67 |
|
| 68 |
-
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
|
| 72 |
-
lines = text.split("\n")
|
| 73 |
-
chunks, current_chunk, current_tokens = [], [], 0
|
| 74 |
for line in lines:
|
| 75 |
-
|
| 76 |
-
if
|
| 77 |
-
if
|
| 78 |
-
chunks.append("\n".join(
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
else:
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
if
|
| 84 |
-
chunks.append("\n".join(
|
| 85 |
return chunks
|
| 86 |
|
| 87 |
def build_prompt_from_text(chunk: str) -> str:
|
| 88 |
return f"""
|
| 89 |
### Unstructured Clinical Records
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
|
| 94 |
-
|
| 95 |
-
Here is the extracted content chunk:
|
| 96 |
-
|
| 97 |
-
{chunk}
|
| 98 |
-
|
| 99 |
-
Please analyze the above and provide:
|
| 100 |
- Diagnostic Patterns
|
| 101 |
- Medication Issues
|
| 102 |
- Missed Opportunities
|
| 103 |
- Inconsistencies
|
| 104 |
- Follow-up Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
"""
|
| 106 |
|
| 107 |
def init_agent():
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
shutil.copy(default_tool_path, target_tool_path)
|
| 112 |
agent = TxAgent(
|
| 113 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
| 114 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
| 115 |
-
tool_files_dict={"new_tool":
|
| 116 |
force_finish=True,
|
| 117 |
enable_checker=True,
|
| 118 |
step_rag_num=4,
|
| 119 |
-
seed=100
|
| 120 |
-
additional_default_tools=[]
|
| 121 |
)
|
| 122 |
agent.init_model()
|
| 123 |
return agent
|
| 124 |
|
| 125 |
-
def
|
| 126 |
-
|
| 127 |
-
report_path = None
|
| 128 |
-
|
| 129 |
-
if file is None or not hasattr(file, "name"):
|
| 130 |
-
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
|
| 131 |
-
return messages, report_path
|
| 132 |
-
|
| 133 |
-
try:
|
| 134 |
-
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
| 135 |
-
messages.append({"role": "assistant", "content": "⏳ Extracting and analyzing data..."})
|
| 136 |
-
extracted_text = extract_text_from_excel(file.name)
|
| 137 |
-
chunks = split_text_into_chunks(extracted_text)
|
| 138 |
-
chunk_responses = [None] * len(chunks)
|
| 139 |
-
|
| 140 |
-
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
|
| 141 |
-
prompt = build_prompt_from_text(chunk)
|
| 142 |
-
prompt_tokens = estimate_tokens(prompt)
|
| 143 |
-
if prompt_tokens > MAX_MODEL_TOKENS:
|
| 144 |
-
return index, f"❌ Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
|
| 145 |
-
response = ""
|
| 146 |
-
try:
|
| 147 |
-
for result in agent.run_gradio_chat(
|
| 148 |
-
message=prompt,
|
| 149 |
-
history=[],
|
| 150 |
-
temperature=0.2,
|
| 151 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 152 |
-
max_token=MAX_MODEL_TOKENS,
|
| 153 |
-
call_agent=False,
|
| 154 |
-
conversation=[],
|
| 155 |
-
):
|
| 156 |
-
if isinstance(result, str):
|
| 157 |
-
response += result
|
| 158 |
-
elif hasattr(result, "content"):
|
| 159 |
-
response += result.content
|
| 160 |
-
elif isinstance(result, list):
|
| 161 |
-
for r in result:
|
| 162 |
-
if hasattr(r, "content"):
|
| 163 |
-
response += r.content
|
| 164 |
-
except Exception as e:
|
| 165 |
-
return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
|
| 166 |
-
return index, clean_response(response)
|
| 167 |
-
|
| 168 |
-
with ThreadPoolExecutor(max_workers=1) as executor:
|
| 169 |
-
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
|
| 170 |
-
for future in as_completed(futures):
|
| 171 |
-
i, result = future.result()
|
| 172 |
-
chunk_responses[i] = result
|
| 173 |
-
if not result.startswith("❌"):
|
| 174 |
-
messages.append({"role": "assistant", "content": f"✅ Chunk {i+1} analysis complete"})
|
| 175 |
-
else:
|
| 176 |
-
messages.append({"role": "assistant", "content": result})
|
| 177 |
-
|
| 178 |
-
valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
|
| 179 |
-
if not valid_responses:
|
| 180 |
-
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
|
| 181 |
-
return messages, report_path
|
| 182 |
-
|
| 183 |
-
summary = ""
|
| 184 |
-
current_summary_tokens = 0
|
| 185 |
-
for i, response in enumerate(valid_responses):
|
| 186 |
-
response_tokens = estimate_tokens(response)
|
| 187 |
-
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
| 188 |
-
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
| 189 |
-
summary_response = ""
|
| 190 |
-
try:
|
| 191 |
-
for result in agent.run_gradio_chat(
|
| 192 |
-
message=summary_prompt,
|
| 193 |
-
history=[],
|
| 194 |
-
temperature=0.2,
|
| 195 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 196 |
-
max_token=MAX_MODEL_TOKENS,
|
| 197 |
-
call_agent=False,
|
| 198 |
-
conversation=[],
|
| 199 |
-
):
|
| 200 |
-
if isinstance(result, str):
|
| 201 |
-
summary_response += result
|
| 202 |
-
elif hasattr(result, "content"):
|
| 203 |
-
summary_response += result.content
|
| 204 |
-
elif isinstance(result, list):
|
| 205 |
-
for r in result:
|
| 206 |
-
if hasattr(r, "content"):
|
| 207 |
-
summary_response += r.content
|
| 208 |
-
summary = clean_response(summary_response)
|
| 209 |
-
current_summary_tokens = estimate_tokens(summary)
|
| 210 |
-
except Exception as e:
|
| 211 |
-
messages.append({"role": "assistant", "content": f"❌ Error summarizing intermediate results: {str(e)}"})
|
| 212 |
-
return messages, report_path
|
| 213 |
-
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
| 214 |
-
current_summary_tokens += response_tokens
|
| 215 |
-
|
| 216 |
-
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
| 217 |
-
messages.append({"role": "assistant", "content": "📊 Generating final report..."})
|
| 218 |
-
|
| 219 |
-
final_report_text = ""
|
| 220 |
-
try:
|
| 221 |
-
for result in agent.run_gradio_chat(
|
| 222 |
-
message=final_prompt,
|
| 223 |
-
history=[],
|
| 224 |
-
temperature=0.2,
|
| 225 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 226 |
-
max_token=MAX_MODEL_TOKENS,
|
| 227 |
-
call_agent=False,
|
| 228 |
-
conversation=[],
|
| 229 |
-
):
|
| 230 |
-
if isinstance(result, str):
|
| 231 |
-
final_report_text += result
|
| 232 |
-
elif hasattr(result, "content"):
|
| 233 |
-
final_report_text += result.content
|
| 234 |
-
elif isinstance(result, list):
|
| 235 |
-
for r in result:
|
| 236 |
-
if hasattr(r, "content"):
|
| 237 |
-
final_report_text += r.content
|
| 238 |
-
except Exception as e:
|
| 239 |
-
messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"})
|
| 240 |
-
return messages, report_path
|
| 241 |
-
|
| 242 |
-
final_report = f"# 🧠 Final Patient Report\n\n{clean_response(final_report_text)}"
|
| 243 |
-
messages[-1]["content"] = f"📊 Final Report:\n\n{clean_response(final_report_text)}"
|
| 244 |
-
|
| 245 |
-
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 246 |
-
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
| 247 |
-
|
| 248 |
-
with open(report_path, 'w') as f:
|
| 249 |
-
f.write(final_report)
|
| 250 |
-
|
| 251 |
-
messages.append({"role": "assistant", "content": f"✅ Report generated and saved: report_{timestamp}.md"})
|
| 252 |
-
|
| 253 |
-
except Exception as e:
|
| 254 |
-
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
|
| 255 |
-
|
| 256 |
-
return messages, report_path
|
| 257 |
|
| 258 |
def create_ui(agent):
|
| 259 |
-
with gr.Blocks(
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
.gradio-container {
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
}
|
| 268 |
-
.gr-button
|
| 269 |
-
background: linear-gradient(
|
| 270 |
color: white;
|
|
|
|
| 271 |
border: none;
|
|
|
|
| 272 |
border-radius: 8px;
|
|
|
|
| 273 |
}
|
| 274 |
-
.gr-button
|
| 275 |
-
background: linear-gradient(
|
| 276 |
}
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
.
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
.chat-message-content ul {
|
| 293 |
-
padding-left: 1.2em;
|
| 294 |
-
margin: 0.4em 0;
|
| 295 |
-
}
|
| 296 |
-
"""
|
| 297 |
-
) as demo:
|
| 298 |
-
gr.Markdown("""
|
| 299 |
-
<h2 style='color:#182848'>🏥 Patient History Analysis Tool</h2>
|
| 300 |
-
<p style='color:#444;'>Upload an Excel file containing clinical data. The assistant will analyze it for patterns, inconsistencies, and recommendations.</p>
|
| 301 |
-
""")
|
| 302 |
-
|
| 303 |
-
with gr.Row():
|
| 304 |
-
with gr.Column(scale=3):
|
| 305 |
-
chatbot = gr.Chatbot(
|
| 306 |
-
label="Clinical Assistant",
|
| 307 |
-
show_copy_button=True,
|
| 308 |
-
height=600,
|
| 309 |
-
type="messages",
|
| 310 |
-
avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"),
|
| 311 |
-
render_markdown=True
|
| 312 |
-
)
|
| 313 |
-
with gr.Column(scale=1):
|
| 314 |
-
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"], height=100)
|
| 315 |
-
analyze_btn = gr.Button("🧠 Analyze Patient History", variant="primary", elem_classes="primary")
|
| 316 |
-
report_output = gr.File(label="Download Report", visible=False, interactive=False)
|
| 317 |
-
|
| 318 |
-
chatbot_state = gr.State(value=[])
|
| 319 |
-
|
| 320 |
-
def update_ui(file, current_state):
|
| 321 |
-
messages, report_path = process_final_report(agent, file, current_state)
|
| 322 |
-
formatted_messages = []
|
| 323 |
-
for msg in messages:
|
| 324 |
-
role = msg.get("role")
|
| 325 |
-
content = msg.get("content", "")
|
| 326 |
-
if role == "assistant":
|
| 327 |
-
content = content.replace("- ", "\n- ")
|
| 328 |
-
content = f"<div class='chat-message-content'>{content}</div>"
|
| 329 |
-
formatted_messages.append({"role": role, "content": content})
|
| 330 |
-
report_update = gr.update(visible=report_path is not None, value=report_path)
|
| 331 |
-
return formatted_messages, report_update, formatted_messages
|
| 332 |
-
|
| 333 |
-
analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state], api_name="analyze")
|
| 334 |
|
| 335 |
return demo
|
| 336 |
|
|
@@ -338,7 +169,7 @@ if __name__ == "__main__":
|
|
| 338 |
try:
|
| 339 |
agent = init_agent()
|
| 340 |
demo = create_ui(agent)
|
| 341 |
-
demo.launch(server_name="0.0.0.0", server_port=7860,
|
| 342 |
except Exception as e:
|
| 343 |
print(f"Error: {str(e)}")
|
| 344 |
-
sys.exit(1)
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import json
|
| 5 |
import gradio as gr
|
| 6 |
+
from typing import List, Tuple, Union, Generator
|
| 7 |
import hashlib
|
| 8 |
import shutil
|
| 9 |
import re
|
| 10 |
from datetime import datetime
|
|
|
|
| 11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 12 |
|
| 13 |
+
# Setup directories
|
| 14 |
persistent_dir = "/data/hf_cache"
|
| 15 |
os.makedirs(persistent_dir, exist_ok=True)
|
| 16 |
|
|
|
|
| 19 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
| 20 |
report_dir = os.path.join(persistent_dir, "reports")
|
| 21 |
|
| 22 |
+
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
| 23 |
+
os.makedirs(d, exist_ok=True)
|
| 24 |
|
| 25 |
os.environ["HF_HOME"] = model_cache_dir
|
| 26 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
| 27 |
|
| 28 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
|
|
|
|
|
|
|
|
|
|
| 29 |
from txagent.txagent import TxAgent
|
| 30 |
|
|
|
|
| 31 |
MAX_MODEL_TOKENS = 32768
|
| 32 |
MAX_CHUNK_TOKENS = 8192
|
| 33 |
MAX_NEW_TOKENS = 2048
|
| 34 |
PROMPT_OVERHEAD = 500
|
| 35 |
|
| 36 |
def clean_response(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
| 38 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
| 39 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
|
|
| 42 |
def estimate_tokens(text: str) -> int:
|
| 43 |
return len(text) // 3.5 + 1
|
| 44 |
|
| 45 |
+
def extract_text_from_excel(file_obj: Union[str, os.PathLike, 'file']) -> str:
|
| 46 |
all_text = []
|
| 47 |
try:
|
| 48 |
+
xls = pd.ExcelFile(file_obj)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
+
raise ValueError(f"❌ Error reading Excel file: {e}")
|
| 51 |
+
for sheet_name in xls.sheet_names:
|
| 52 |
+
df = xls.parse(sheet_name).astype(str).fillna("")
|
| 53 |
+
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
|
| 54 |
+
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
|
| 55 |
+
all_text.extend(sheet_text)
|
| 56 |
return "\n".join(all_text)
|
| 57 |
|
| 58 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
|
| 59 |
+
effective_max = max_tokens - PROMPT_OVERHEAD
|
| 60 |
+
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
|
|
|
|
|
|
|
|
|
| 61 |
for line in lines:
|
| 62 |
+
t = estimate_tokens(line)
|
| 63 |
+
if curr_tokens + t > effective_max:
|
| 64 |
+
if curr_chunk:
|
| 65 |
+
chunks.append("\n".join(curr_chunk))
|
| 66 |
+
if len(chunks) >= max_chunks:
|
| 67 |
+
break
|
| 68 |
+
curr_chunk, curr_tokens = [line], t
|
| 69 |
else:
|
| 70 |
+
curr_chunk.append(line)
|
| 71 |
+
curr_tokens += t
|
| 72 |
+
if curr_chunk and len(chunks) < max_chunks:
|
| 73 |
+
chunks.append("\n".join(curr_chunk))
|
| 74 |
return chunks
|
| 75 |
|
| 76 |
def build_prompt_from_text(chunk: str) -> str:
|
| 77 |
return f"""
|
| 78 |
### Unstructured Clinical Records
|
| 79 |
|
| 80 |
+
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
- Diagnostic Patterns
|
| 82 |
- Medication Issues
|
| 83 |
- Missed Opportunities
|
| 84 |
- Inconsistencies
|
| 85 |
- Follow-up Recommendations
|
| 86 |
+
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
{chunk}
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
Respond in well-structured bullet points with medical reasoning.
|
| 93 |
"""
|
| 94 |
|
| 95 |
def init_agent():
|
| 96 |
+
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
| 97 |
+
if not os.path.exists(tool_path):
|
| 98 |
+
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
|
|
|
| 99 |
agent = TxAgent(
|
| 100 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
| 101 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
| 102 |
+
tool_files_dict={"new_tool": tool_path},
|
| 103 |
force_finish=True,
|
| 104 |
enable_checker=True,
|
| 105 |
step_rag_num=4,
|
| 106 |
+
seed=100
|
|
|
|
| 107 |
)
|
| 108 |
agent.init_model()
|
| 109 |
return agent
|
| 110 |
|
| 111 |
+
def stream_report(agent, file: Union[str, 'file'], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
|
| 112 |
+
yield from stream_report_wrapper(agent)(file, full_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
def create_ui(agent):
|
| 115 |
+
with gr.Blocks(css="""
|
| 116 |
+
body {
|
| 117 |
+
background: #10141f;
|
| 118 |
+
color: #ffffff;
|
| 119 |
+
font-family: 'Inter', sans-serif;
|
| 120 |
+
margin: 0;
|
| 121 |
+
padding: 0;
|
| 122 |
+
}
|
| 123 |
.gradio-container {
|
| 124 |
+
padding: 30px;
|
| 125 |
+
width: 100vw;
|
| 126 |
+
max-width: 100%;
|
| 127 |
+
border-radius: 0;
|
| 128 |
+
background-color: #1a1f2e;
|
| 129 |
+
}
|
| 130 |
+
.output-markdown {
|
| 131 |
+
background-color: #131720;
|
| 132 |
+
border-radius: 12px;
|
| 133 |
+
padding: 20px;
|
| 134 |
+
min-height: 600px;
|
| 135 |
+
overflow-y: auto;
|
| 136 |
+
border: 1px solid #2c3344;
|
| 137 |
}
|
| 138 |
+
.gr-button {
|
| 139 |
+
background: linear-gradient(135deg, #4b4ced, #37b6e9);
|
| 140 |
color: white;
|
| 141 |
+
font-weight: 500;
|
| 142 |
border: none;
|
| 143 |
+
padding: 10px 20px;
|
| 144 |
border-radius: 8px;
|
| 145 |
+
transition: background 0.3s ease;
|
| 146 |
}
|
| 147 |
+
.gr-button:hover {
|
| 148 |
+
background: linear-gradient(135deg, #37b6e9, #4b4ced);
|
| 149 |
}
|
| 150 |
+
""") as demo:
|
| 151 |
+
gr.Markdown("""# 🧠 Clinical Reasoning Assistant
|
| 152 |
+
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
| 153 |
+
""")
|
| 154 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
| 155 |
+
analyze_btn = gr.Button("Analyze")
|
| 156 |
+
report_output_markdown = gr.Markdown(elem_classes="output-markdown")
|
| 157 |
+
report_file = gr.File(label="Download Report", visible=False)
|
| 158 |
+
full_output = gr.State(value="")
|
| 159 |
+
|
| 160 |
+
analyze_btn.click(
|
| 161 |
+
fn=stream_report,
|
| 162 |
+
inputs=[file_upload, full_output],
|
| 163 |
+
outputs=[report_output_markdown, report_file, full_output]
|
| 164 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
return demo
|
| 167 |
|
|
|
|
| 169 |
try:
|
| 170 |
agent = init_agent()
|
| 171 |
demo = create_ui(agent)
|
| 172 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=True)
|
| 173 |
except Exception as e:
|
| 174 |
print(f"Error: {str(e)}")
|
| 175 |
+
sys.exit(1)
|