File size: 7,931 Bytes
1777737
3a20a5b
728def5
 
3a20a5b
8505d49
446fbec
dfe34bb
446fbec
841c3cb
 
0e7a2f6
dfe34bb
8505d49
5ff2c92
 
c87fc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8505d49
28560cd
dfe34bb
28560cd
 
 
446fbec
 
 
3a20a5b
41945fe
3a20a5b
41945fe
3a20a5b
 
ff7a915
446fbec
 
 
 
 
5ff2c92
ff7a915
dfe34bb
5ff2c92
dfe34bb
28560cd
dfe34bb
28560cd
446fbec
28560cd
446fbec
dfe34bb
446fbec
 
28560cd
446fbec
 
 
 
 
 
5ff2c92
446fbec
dfe34bb
5ff2c92
dfe34bb
 
3492c23
c8ac86a
3ae42d2
3a20a5b
 
 
 
 
 
 
 
774fd26
3492c23
28560cd
dfe34bb
4e4aafc
 
 
 
 
 
dfe34bb
4a6ed35
28560cd
dfe34bb
28560cd
 
 
 
 
 
 
 
 
 
 
 
5ff2c92
28560cd
5ff2c92
28560cd
 
c87fc4e
 
 
 
 
 
 
 
5ff2c92
c87fc4e
5ff2c92
 
 
 
 
 
 
 
446fbec
28560cd
5ff2c92
c87fc4e
 
 
 
 
 
 
 
 
 
28560cd
 
 
 
88317c7
3a20a5b
 
 
88317c7
3a20a5b
28560cd
3ae42d2
 
3a20a5b
3492c23
c87fc4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
import re
from typing import List

# βœ… Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))

from txagent.txagent import TxAgent

def sanitize_utf8(text: str) -> str:
    return re.sub(r'[\ud800-\udfff]', '', text)

def chunk_text(text: str, max_tokens=8000) -> List[str]:
    chunks = []
    lines = text.split("\n")
    current_chunk = []
    current_tokens = 0
    for line in lines:
        line_tokens = len(line.split())
        if current_tokens + line_tokens > max_tokens:
            chunks.append("\n".join(current_chunk))
            current_chunk = [line]
            current_tokens = line_tokens
        else:
            current_chunk.append(line)
            current_tokens += line_tokens
    if current_chunk:
        chunks.append("\n".join(current_chunk))
    return chunks

def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
    try:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"

        if progress:
            progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")

        if file_path.endswith(".csv"):
            df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
        elif file_path.endswith((".xls", ".xlsx")):
            df = pd.read_excel(file_path, engine="openpyxl")
        else:
            return f"Unsupported spreadsheet format: {file_path}"

        lines = []
        for _, row in df.iterrows():
            line = " | ".join(str(cell) for cell in row if pd.notna(cell))
            if line:
                lines.append(line)
        return f"πŸ“„ {os.path.basename(file_path)}\n\n" + "\n".join(lines)

    except Exception as e:
        return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"

def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
    try:
        if not os.path.exists(file_path):
            return f"PDF not found: {file_path}"

        extracted = []
        with pdfplumber.open(file_path) as pdf:
            num_pages = len(pdf.pages)
            for i, page in enumerate(pdf.pages):
                try:
                    text = page.extract_text() or ""
                    extracted.append(text.strip())
                    if progress:
                        progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
                except Exception as e:
                    extracted.append(f"[Error reading page {i+1}]: {str(e)}")
        return f"πŸ“„ {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)

    except Exception as e:
        return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>πŸ“‹ CPS: Clinical Patient Support System</h1>")
        chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")

        file_upload = gr.File(
            label="Upload Medical File",
            file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
            file_count="multiple"
        )
        message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
        send_button = gr.Button("Send", variant="primary")
        conversation_state = gr.State([])

        def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
            context = (
                "You are an expert clinical AI assistant reviewing medical form or interview data. "
                "Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
                "Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
                "Ensure the output is informative and helpful for improving patient care. "
                "Do not hallucinate. Base the response only on the provided form content. "
                "End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed."
            )

            try:
                extracted_text = ""
                if uploaded_files and isinstance(uploaded_files, list):
                    total_files = len(uploaded_files)
                    for index, file in enumerate(uploaded_files):
                        if not hasattr(file, 'name'):
                            continue
                        path = file.name
                        try:
                            if path.endswith((".csv", ".xls", ".xlsx")):
                                extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
                            elif path.endswith(".pdf"):
                                extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
                            else:
                                extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
                        except Exception as file_error:
                            extracted_text += f"[Error processing file: {os.path.basename(path)}] β€” {str(file_error)}\n"
                            continue

                sanitized = sanitize_utf8(extracted_text.strip())
                chunks = chunk_text(sanitized, max_tokens=8000)

                for i, chunk in enumerate(chunks):
                    chunked_prompt = (
                        f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n--- End of Chunk ---\n\nNow begin your reasoning:"
                    )

                    generator = agent.run_gradio_chat(
                        message=chunked_prompt,
                        history=history,
                        temperature=0.3,
                        max_new_tokens=1024,
                        max_token=8192,
                        call_agent=False,
                        conversation=conversation,
                        uploaded_files=uploaded_files,
                        max_round=30
                    )

                    for update in generator:
                        try:
                            if isinstance(update, list):
                                cleaned = [msg for msg in update if hasattr(msg, 'role') and hasattr(msg, 'content')]
                                if cleaned:
                                    yield cleaned
                            elif isinstance(update, str):
                                yield sanitize_utf8(update.encode("utf-8", "replace").decode("utf-8"))
                        except Exception as update_error:
                            print(f"Error processing update: {update_error}")
                            continue

            except Exception as chat_error:
                print(f"Chat handling error: {chat_error}")
                yield "An error occurred while processing your request. Please try again."

        inputs = [message_input, chatbot, conversation_state, file_upload]
        send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
        message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)

        gr.Examples([
            ["Upload your medical form and ask what the doctor might've missed."],
            ["This patient was treated with antibiotics for UTI. What else should we check?"],
            ["Is there anything abnormal in the attached blood work report?"]
        ], inputs=message_input)

    return demo