File size: 8,280 Bytes
a1a096d
d184610
1c5bd8e
8c16b9e
a1a096d
d8282f1
a1a096d
8c16b9e
a1a096d
 
 
 
 
 
 
 
f6e551c
 
a57b988
f6e551c
8c16b9e
a1a096d
 
8c16b9e
4bfbcac
0fb33af
f75a23b
c5da27e
 
 
 
8b1bbeb
1244d40
a1a096d
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a1a096d
ad85a12
c5da27e
a1a096d
 
 
c5da27e
a1a096d
c5da27e
a1a096d
1a611b9
8b1bbeb
a1a096d
 
 
 
 
 
 
 
 
ad85a12
a1a096d
 
 
 
ad85a12
 
a1a096d
 
0e6914c
a1a096d
8c16b9e
 
 
 
 
3ed8d49
 
 
 
 
 
a1a096d
 
 
 
 
 
 
1a611b9
 
 
a1a096d
1a611b9
 
 
a1a096d
1a611b9
 
 
a57b988
a1a096d
 
c5da27e
a1a096d
 
 
 
 
c5da27e
a1a096d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5da27e
a1a096d
 
c5da27e
a1a096d
 
 
c5da27e
 
a1a096d
 
aa559b4
8c16b9e
a1a096d
 
26faa43
 
a1a096d
26faa43
a1a096d
 
 
26faa43
a1a096d
26faa43
a1a096d
 
 
26faa43
a1a096d
7771dd9
a71a831
55e3db0
abd27cc
d8282f1
a57b988
a1a096d
 
 
 
1a611b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import sys, os, json, shutil, re, time, gc, hashlib
import pandas as pd
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Tuple, Dict, Union

import gradio as gr

# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300

# Paths
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def estimate_tokens(text: str) -> int:
    return len(text) // 4 + 1

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def extract_text_from_excel(path: str) -> str:
    all_text = []
    try:
        xls = pd.ExcelFile(path)
        for sheet in xls.sheet_names:
            df = xls.parse(sheet).astype(str).fillna("")
            rows = df.apply(lambda row: " | ".join(row), axis=1)
            all_text += [f"[{sheet}] {line}" for line in rows]
    except Exception as e:
        raise ValueError(f"Error reading Excel file: {str(e)}")
    return "\n".join(all_text)

def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
    effective_limit = max_tokens - PROMPT_OVERHEAD
    chunks, current, current_tokens = [], [], 0
    for line in text.split("\n"):
        tokens = estimate_tokens(line)
        if current_tokens + tokens > effective_limit:
            if current:
                chunks.append("\n".join(current))
            current, current_tokens = [line], tokens
        else:
            current.append(line)
            current_tokens += tokens
    if current:
        chunks.append("\n".join(current))
    return chunks

def build_prompt(chunk: str) -> str:
    return f"""### Unstructured Clinical Records

Analyze the clinical notes below and summarize with:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations

---

{chunk}

---
Respond concisely in bullet points with clinical reasoning."""

def init_agent() -> TxAgent:
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def analyze_chunks_parallel(agent, chunks: List[str]) -> List[str]:
    results = [None] * len(chunks)

    def analyze(i, chunk):
        prompt = build_prompt(chunk)
        try:
            if estimate_tokens(prompt) > MAX_MODEL_TOKENS:
                return i, f"❌ Chunk {i+1} too long. Skipped."
            response = ""
            for r in agent.run_gradio_chat(
                message=prompt,
                history=[],
                temperature=0.2,
                max_new_tokens=MAX_NEW_TOKENS,
                max_token=MAX_MODEL_TOKENS,
                call_agent=False,
                conversation=[]
            ):
                if isinstance(r, str):
                    response += r
                elif isinstance(r, list):
                    for m in r:
                        if hasattr(m, "content"):
                            response += m.content
                elif hasattr(r, "content"):
                    response += r.content
            gc.collect()
            return i, clean_response(response)
        except Exception as e:
            return i, f"❌ Error in chunk {i+1}: {str(e)}"

    with ThreadPoolExecutor(max_workers=4) as executor:
        futures = [executor.submit(analyze, i, chunk) for i, chunk in enumerate(chunks)]
        for future in as_completed(futures):
            i, res = future.result()
            results[i] = res

    return results

def generate_final_summary(agent, combined: str) -> str:
    final_prompt = f"""Provide a structured medical report based on the following summaries:

{combined}

Respond in detailed medical bullet points."""
    full_report = ""
    for r in agent.run_gradio_chat(
        message=final_prompt,
        history=[],
        temperature=0.2,
        max_new_tokens=MAX_NEW_TOKENS,
        max_token=MAX_MODEL_TOKENS,
        call_agent=False,
        conversation=[]
    ):
        if isinstance(r, str):
            full_report += r
        elif isinstance(r, list):
            for m in r:
                if hasattr(m, "content"):
                    full_report += m.content
        elif hasattr(r, "content"):
            full_report += r.content
    return clean_response(full_report)

def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    if not file or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
        return messages, None

    messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {os.path.basename(file.name)}"})
    try:
        extracted = extract_text_from_excel(file.name)
        chunks = split_text(extracted)
        messages.append({"role": "assistant", "content": f"πŸ” Split into {len(chunks)} chunks. Analyzing..."})

        chunk_results = analyze_chunks_parallel(agent, chunks)
        valid = [res for res in chunk_results if not res.startswith("❌")]

        if not valid:
            messages.append({"role": "assistant", "content": "❌ No valid chunk outputs."})
            return messages, None

        summary = generate_final_summary(agent, "\n\n".join(valid))
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w', encoding='utf-8') as f:
            f.write(f"# 🧠 Final Medical Report\n\n{summary}")

        messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
        messages.append({"role": "assistant", "content": f"βœ… Report saved: {os.path.basename(report_path)}"})
        return messages, report_path

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        return messages, None

def create_ui(agent):
    with gr.Blocks() as demo:
        gr.Markdown("<h2 style='color:#1e88e5'>🩺 Patient AI Assistant</h2><p>Upload a clinical Excel file and receive a diagnostic summary.</p>")
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Assistant", height=700, type="messages")
            with gr.Column(scale=1):
                upload = gr.File(label="Upload Excel", file_types=[".xlsx"])
                analyze = gr.Button("🧠 Analyze", variant="primary")
                download = gr.File(label="Download Report", visible=False, interactive=False)

        state = gr.State(value=[])

        def handle_analysis(file, chat):
            messages, report_path = process_report(agent, file, chat)
            return messages, gr.update(visible=bool(report_path), value=report_path), messages

        analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        ui = create_ui(agent)
        ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as err:
        print(f"Startup failed: {err}")
        sys.exit(1)