File size: 12,829 Bytes
9618ebe 7323cb6 abc4511 7323cb6 6af3907 abc4511 6af3907 abc4511 3cdcbc4 c5494f7 3cdcbc4 abc4511 3cdcbc4 9ef8abc c441954 3cdcbc4 abc4511 dae38a2 7323cb6 abc4511 1da2cfd abc4511 1da2cfd 3cdcbc4 abc4511 6af3907 3cdcbc4 abc4511 1da2cfd abc4511 e24be23 abc4511 dae38a2 abc4511 7323cb6 6af3907 abc4511 1da2cfd abc4511 1da2cfd 6af3907 abc4511 dae38a2 abc4511 dae38a2 6af3907 abc4511 7323cb6 dae38a2 7323cb6 abc4511 6af3907 7323cb6 6af3907 abc4511 6af3907 abc4511 6af3907 abc4511 5f7a1a1 abc4511 3cdcbc4 6af3907 abc4511 6af3907 abc4511 9ef8abc 6af3907 3cdcbc4 6af3907 abc4511 3cdcbc4 6af3907 abc4511 6af3907 abc4511 6af3907 abc4511 6af3907 3cdcbc4 6af3907 abc4511 6af3907 3cdcbc4 abc4511 6af3907 abc4511 e24be23 abc4511 6af3907 abc4511 9ef8abc abc4511 3cdcbc4 abc4511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from threading import Thread, Lock
import re
import tempfile
import threading
# ---------------------------------------------------------------------------------------
# Setup persistent directories for Hugging Face Spaces
# ---------------------------------------------------------------------------------------
# Use a persistent cache directory (adjust the path as needed based on your HF Space settings)
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
# Set environment variables so that model and transformers caches point to persistent storage.
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Append the local source path if needed
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
# ---------------------------------------------------------------------------------------
# Import the TxAgent from your tool package
# ---------------------------------------------------------------------------------------
from txagent.txagent import TxAgent
# ---------------------------------------------------------------------------------------
# Define constants and helper functions
# ---------------------------------------------------------------------------------------
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
# Process first three pages always
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
# Process subsequent pages only if they contain key medical keywords
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
Thread(target=full_pdf_processing, args=(file_path, h)).start()
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def full_pdf_processing(file_path: str, file_hash_value: str):
try:
cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
if os.path.exists(cache_path):
return
with pdfplumber.open(file_path) as pdf:
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
for i, page in enumerate(pdf.pages)])
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out:
out.write(full_text)
except Exception as e:
print(f"Background processing failed: {str(e)}")
# ---------------------------------------------------------------------------------------
# Global agent variable and thread-safe lock for background model loading
# ---------------------------------------------------------------------------------------
agent = None
agent_lock = Lock()
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
new_agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
new_agent.init_model()
return new_agent
def load_agent_in_background():
global agent
with agent_lock:
if agent is None:
print("Initializing agent in background (this may take a while)...")
agent = init_agent()
print("Agent initialization complete.")
# Start background agent loading at startup
threading.Thread(target=load_agent_in_background, daemon=True).start()
# ---------------------------------------------------------------------------------------
# Define the Gradio UI
# ---------------------------------------------------------------------------------------
def create_ui():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
""")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze_potential_oversights(message: str, history: list, files: list):
global agent
# Append user and interim assistant message
history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
]
yield history, None
if agent is None:
history.append({"role": "assistant",
"content": "🕒 The model is still loading. Please wait a moment and try again."})
yield history, None
return
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')
]
results = []
for future in as_completed(futures):
results.append(sanitize_utf8(future.result()))
extracted_data = "\n".join(results)
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
# Truncate extracted data to avoid token overflow
max_extracted_chars = 12000
truncated_data = extracted_data[:max_extracted_chars]
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{truncated_data}
### Potential Oversights:
"""
response = ""
try:
# Stream agent responses and update the last message in the conversation with each chunk.
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[]
):
if chunk is None:
continue
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
cleaned = response.replace("[TOOL_CALLS]", "").strip()
# Update the assistant message (last item in history) with the latest accumulated answer
history[-1] = {"role": "assistant", "content": cleaned}
yield history, None
except Exception as agent_error:
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed during processing: {str(agent_error)}"}
yield history, None
return
final_output = response.replace("[TOOL_CALLS]", "").strip()
if not final_output:
final_output = "No clear oversights identified. Recommend comprehensive review."
# Update the assistant's message with the final output
history[-1] = {"role": "assistant", "content": final_output}
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
yield history, report_path
send_btn.click(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
msg_input.submit(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
gr.Examples([["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]],
inputs=msg_input)
return demo
if __name__ == "__main__":
print("Launching interface...")
demo = create_ui()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
|