File size: 12,829 Bytes
9618ebe
7323cb6
abc4511
7323cb6
6af3907
abc4511
 
6af3907
abc4511
3cdcbc4
 
 
 
c5494f7
3cdcbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
3cdcbc4
 
 
9ef8abc
c441954
3cdcbc4
 
 
abc4511
 
 
 
 
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
3cdcbc4
abc4511
6af3907
 
3cdcbc4
abc4511
 
 
 
 
1da2cfd
abc4511
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
6af3907
 
abc4511
1da2cfd
abc4511
 
 
1da2cfd
6af3907
 
abc4511
 
dae38a2
abc4511
 
 
 
 
 
dae38a2
6af3907
abc4511
7323cb6
dae38a2
7323cb6
abc4511
 
6af3907
7323cb6
6af3907
abc4511
 
 
6af3907
 
abc4511
 
 
6af3907
abc4511
5f7a1a1
abc4511
 
3cdcbc4
 
 
6af3907
 
 
abc4511
 
 
 
 
6af3907
abc4511
 
 
 
 
 
 
 
9ef8abc
6af3907
 
 
 
 
 
 
3cdcbc4
6af3907
 
 
 
 
abc4511
3cdcbc4
 
 
6af3907
abc4511
 
 
 
 
 
6af3907
 
 
abc4511
 
 
 
6af3907
 
 
 
 
 
 
 
 
 
 
 
abc4511
6af3907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cdcbc4
6af3907
 
 
 
abc4511
 
 
 
 
 
 
 
 
 
 
6af3907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cdcbc4
abc4511
6af3907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
e24be23
 
abc4511
6af3907
abc4511
9ef8abc
 
abc4511
3cdcbc4
abc4511
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
 import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from threading import Thread, Lock
import re
import tempfile
import threading

# ---------------------------------------------------------------------------------------
# Setup persistent directories for Hugging Face Spaces
# ---------------------------------------------------------------------------------------
# Use a persistent cache directory (adjust the path as needed based on your HF Space settings)
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

# Set environment variables so that model and transformers caches point to persistent storage.
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

# Append the local source path if needed
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

# ---------------------------------------------------------------------------------------
# Import the TxAgent from your tool package
# ---------------------------------------------------------------------------------------
from txagent.txagent import TxAgent

# ---------------------------------------------------------------------------------------
# Define constants and helper functions
# ---------------------------------------------------------------------------------------
MEDICAL_KEYWORDS = {
    'diagnosis', 'assessment', 'plan', 'results', 'medications',
    'allergies', 'summary', 'impression', 'findings', 'recommendations'
}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            # Process first three pages always
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            # Process subsequent pages only if they contain key medical keywords
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
            Thread(target=full_pdf_processing, args=(file_path, h)).start()
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, 
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def full_pdf_processing(file_path: str, file_hash_value: str):
    try:
        cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
        if os.path.exists(cache_path):
            return
        with pdfplumber.open(file_path) as pdf:
            full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" 
                                   for i, page in enumerate(pdf.pages)])
        result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out:
            out.write(full_text)
    except Exception as e:
        print(f"Background processing failed: {str(e)}")

# ---------------------------------------------------------------------------------------
# Global agent variable and thread-safe lock for background model loading
# ---------------------------------------------------------------------------------------
agent = None
agent_lock = Lock()

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    new_agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    new_agent.init_model()
    return new_agent

def load_agent_in_background():
    global agent
    with agent_lock:
        if agent is None:
            print("Initializing agent in background (this may take a while)...")
            agent = init_agent()
            print("Agent initialization complete.")

# Start background agent loading at startup
threading.Thread(target=load_agent_in_background, daemon=True).start()

# ---------------------------------------------------------------------------------------
# Define the Gradio UI
# ---------------------------------------------------------------------------------------
def create_ui():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        <h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
        <h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
        """)
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(label="Upload Medical Records", 
                              file_types=[".pdf", ".csv", ".xls", ".xlsx"], 
                              file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze_potential_oversights(message: str, history: list, files: list):
            global agent
            # Append user and interim assistant message
            history = history + [
                {"role": "user", "content": message},
                {"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
            ]
            yield history, None

            if agent is None:
                history.append({"role": "assistant", 
                                "content": "🕒 The model is still loading. Please wait a moment and try again."})
                yield history, None
                return

            extracted_data = ""
            file_hash_value = ""
            if files and isinstance(files, list):
                with ThreadPoolExecutor(max_workers=4) as executor:
                    futures = [
                        executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
                        for f in files if hasattr(f, 'name')
                    ]
                    results = []
                    for future in as_completed(futures):
                        results.append(sanitize_utf8(future.result()))
                    extracted_data = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""

            # Truncate extracted data to avoid token overflow
            max_extracted_chars = 12000
            truncated_data = extracted_data[:max_extracted_chars]

            analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{truncated_data}

### Potential Oversights:
"""

            response = ""
            try:
                # Stream agent responses and update the last message in the conversation with each chunk.
                for chunk in agent.run_gradio_chat(
                    message=analysis_prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=1024,
                    max_token=4096,
                    call_agent=False,
                    conversation=[]
                ):
                    if chunk is None:
                        continue
                    if isinstance(chunk, str):
                        response += chunk
                    elif isinstance(chunk, list):
                        response += "".join([c.content for c in chunk if hasattr(c, 'content')])
                    cleaned = response.replace("[TOOL_CALLS]", "").strip()
                    # Update the assistant message (last item in history) with the latest accumulated answer
                    history[-1] = {"role": "assistant", "content": cleaned}
                    yield history, None
            except Exception as agent_error:
                history[-1] = {"role": "assistant", "content": f"❌ Analysis failed during processing: {str(agent_error)}"}
                yield history, None
                return

            final_output = response.replace("[TOOL_CALLS]", "").strip()
            if not final_output:
                final_output = "No clear oversights identified. Recommend comprehensive review."

            # Update the assistant's message with the final output
            history[-1] = {"role": "assistant", "content": final_output}

            report_path = None
            if file_hash_value:
                possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                if os.path.exists(possible_report):
                    report_path = possible_report

            yield history, report_path

        send_btn.click(analyze_potential_oversights,
                       inputs=[msg_input, gr.State([]), file_upload],
                       outputs=[chatbot, download_output])
        msg_input.submit(analyze_potential_oversights,
                         inputs=[msg_input, gr.State([]), file_upload],
                         outputs=[chatbot, download_output])
        gr.Examples([["What might have been missed in this patient's treatment?"],
                     ["Are there any medication conflicts in these records?"],
                     ["What abnormal results require follow-up?"]],
                    inputs=msg_input)
    return demo

if __name__ == "__main__":
    print("Launching interface...")
    demo = create_ui()
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )