File size: 7,321 Bytes
1bb8be7 dae38a2 1bb8be7 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 d2cced3 9b25f67 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9b25f67 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 9c0d5a4 dae38a2 1bb8be7 dae38a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
# ✅ Persist model cache to Hugging Face Space's /data directory
model_cache_dir = "/data/txagent_models"
os.makedirs(model_cache_dir, exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["HF_HOME"] = model_cache_dir
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def clean_final_response(text: str) -> str:
cleaned = text.replace("[TOOL_CALLS]", "").strip()
responses = cleaned.split("[Final Analysis]")
if len(responses) <= 1:
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>"
panels = []
for i, section in enumerate(responses[1:], 1):
final = section.strip()
panels.append(
f"<div style='background:#2B2B2B;color:#E0E0E0;border-radius:12px;margin-bottom:1em;border:1px solid #888;'>"
f"<div style='font-size:1.1em;font-weight:bold;padding:0.75em;background:#3A3A3A;color:#fff;border-radius:12px 12px 0 0;'>🧠 Final Analysis #{i}</div>"
f"<div style='padding:1em;line-height:1.6;'>{final.replace(chr(10), '<br>')}</div>"
f"</div>"
)
return "".join(panels)
def file_hash(path):
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
cache_dir = "/data/cache"
os.makedirs(cache_dir, exist_ok=True)
h = file_hash(file_path)
cache_path = os.path.join(cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
elif file_type == "pdf":
with pdfplumber.open(file_path) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
open(cache_path, "w", encoding="utf-8").write(result)
return result
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
if df is None or df.empty:
return json.dumps({"warning": f"No data extracted from: {file_path}"})
df = df.fillna("")
content = df.astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
open(cache_path, "w", encoding="utf-8").write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
try:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
for file in uploaded_files:
if not hasattr(file, 'name'):
continue
path = file.name
ext = path.split(".")[-1].lower()
json_text = convert_file_to_json(path, ext)
extracted_text += sanitize_utf8(json_text) + "\n"
context = (
"You are an expert clinical AI assistant. Review this patient's history, medications, and notes, and ONLY provide a final answer summarizing what the doctor might have missed."
)
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
final_response = ""
for update in generator:
if not update:
continue
if isinstance(update, list):
for msg in update:
if hasattr(msg, "content"):
final_response += msg.content
elif isinstance(update, str):
final_response += update
history[-1] = {"role": "assistant", "content": final_response.strip()}
yield history
cleaned = final_response.strip().replace("[TOOL_CALLS]", "").strip()
history[-1] = {"role": "assistant", "content": cleaned or "❌ No response."}
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo
|