Update app.py
Browse files
app.py
CHANGED
@@ -4,51 +4,53 @@ import pandas as pd
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
-
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
-
import time
|
12 |
-
from functools import lru_cache
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
17 |
-
print(f"Adding to path: {src_path}")
|
18 |
-
sys.path.insert(0, src_path)
|
19 |
-
|
20 |
-
# Configure cache directories
|
21 |
-
base_dir = "/data"
|
22 |
-
model_cache_dir = os.path.join(base_dir, "txagent_models")
|
23 |
-
tool_cache_dir = os.path.join(base_dir, "tool_cache")
|
24 |
-
file_cache_dir = os.path.join(base_dir, "cache")
|
25 |
|
|
|
|
|
26 |
os.makedirs(model_cache_dir, exist_ok=True)
|
27 |
-
os.makedirs(tool_cache_dir, exist_ok=True)
|
28 |
-
os.makedirs(file_cache_dir, exist_ok=True)
|
29 |
-
|
30 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
31 |
os.environ["HF_HOME"] = model_cache_dir
|
32 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
33 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
34 |
|
35 |
from txagent.txagent import TxAgent
|
36 |
|
37 |
def sanitize_utf8(text: str) -> str:
|
38 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
39 |
|
40 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with open(path, "rb") as f:
|
42 |
return hashlib.md5(f.read()).hexdigest()
|
43 |
|
44 |
-
@lru_cache(maxsize=100)
|
45 |
-
def get_cached_response(prompt: str, file_hash: str) -> Optional[str]:
|
46 |
-
return None
|
47 |
-
|
48 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
49 |
try:
|
|
|
|
|
50 |
h = file_hash(file_path)
|
51 |
-
cache_path = os.path.join(
|
52 |
|
53 |
if os.path.exists(cache_path):
|
54 |
return open(cache_path, "r", encoding="utf-8").read()
|
@@ -64,8 +66,7 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
64 |
with pdfplumber.open(file_path) as pdf:
|
65 |
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
66 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
|
67 |
-
|
68 |
-
f.write(result)
|
69 |
return result
|
70 |
else:
|
71 |
return json.dumps({"error": f"Unsupported file type: {file_type}"})
|
@@ -76,49 +77,11 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
76 |
df = df.fillna("")
|
77 |
content = df.astype(str).values.tolist()
|
78 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
79 |
-
|
80 |
-
f.write(result)
|
81 |
return result
|
82 |
except Exception as e:
|
83 |
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
|
84 |
|
85 |
-
def convert_files_to_json_parallel(uploaded_files: list) -> str:
|
86 |
-
extracted_text = []
|
87 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
88 |
-
futures = []
|
89 |
-
for file in uploaded_files:
|
90 |
-
if not hasattr(file, 'name'):
|
91 |
-
continue
|
92 |
-
path = file.name
|
93 |
-
ext = path.split(".")[-1].lower()
|
94 |
-
futures.append(executor.submit(convert_file_to_json, path, ext))
|
95 |
-
|
96 |
-
for future in as_completed(futures):
|
97 |
-
extracted_text.append(sanitize_utf8(future.result()))
|
98 |
-
return "\n".join(extracted_text)
|
99 |
-
|
100 |
-
def init_agent():
|
101 |
-
default_tool_path = os.path.abspath("data/new_tool.json")
|
102 |
-
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
103 |
-
if not os.path.exists(target_tool_path):
|
104 |
-
shutil.copy(default_tool_path, target_tool_path)
|
105 |
-
|
106 |
-
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
107 |
-
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
108 |
-
|
109 |
-
agent = TxAgent(
|
110 |
-
model_name=model_name,
|
111 |
-
rag_model_name=rag_model_name,
|
112 |
-
tool_files_dict={"new_tool": target_tool_path},
|
113 |
-
force_finish=True,
|
114 |
-
enable_checker=True,
|
115 |
-
step_rag_num=8,
|
116 |
-
seed=100,
|
117 |
-
additional_default_tools=[]
|
118 |
-
)
|
119 |
-
agent.init_model()
|
120 |
-
return agent
|
121 |
-
|
122 |
def create_ui(agent: TxAgent):
|
123 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
124 |
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
|
@@ -134,61 +97,60 @@ def create_ui(agent: TxAgent):
|
|
134 |
conversation_state = gr.State([])
|
135 |
|
136 |
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
|
137 |
-
start_time = time.time()
|
138 |
try:
|
139 |
history.append({"role": "user", "content": message})
|
140 |
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
|
141 |
yield history
|
142 |
|
143 |
-
file_process_time = time.time()
|
144 |
extracted_text = ""
|
145 |
if uploaded_files and isinstance(uploaded_files, list):
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
context = (
|
150 |
-
"You are an expert clinical AI assistant. Review this patient's history, "
|
151 |
-
"medications, and notes, and ONLY provide a final answer summarizing "
|
152 |
-
"what the doctor might have missed."
|
153 |
)
|
154 |
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
|
155 |
|
156 |
-
model_start = time.time()
|
157 |
generator = agent.run_gradio_chat(
|
158 |
message=chunked_prompt,
|
159 |
history=[],
|
160 |
temperature=0.3,
|
161 |
-
max_new_tokens=
|
162 |
-
max_token=
|
163 |
call_agent=False,
|
164 |
conversation=conversation,
|
165 |
uploaded_files=uploaded_files,
|
166 |
-
max_round=
|
167 |
)
|
168 |
|
169 |
-
final_response =
|
170 |
for update in generator:
|
171 |
if not update:
|
172 |
continue
|
173 |
-
if isinstance(update,
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
yield history
|
185 |
|
186 |
except Exception as chat_error:
|
187 |
print(f"Chat handling error: {chat_error}")
|
188 |
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
|
189 |
yield history
|
190 |
-
finally:
|
191 |
-
print(f"Total request time: {time.time() - start_time:.2f}s")
|
192 |
|
193 |
inputs = [message_input, chatbot, conversation_state, file_upload]
|
194 |
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
@@ -201,32 +163,3 @@ def create_ui(agent: TxAgent):
|
|
201 |
], inputs=message_input)
|
202 |
|
203 |
return demo
|
204 |
-
|
205 |
-
if __name__ == "__main__":
|
206 |
-
print("Initializing agent...")
|
207 |
-
agent = init_agent()
|
208 |
-
|
209 |
-
print("Performing warm-up call...")
|
210 |
-
try:
|
211 |
-
warm_up = agent.run_gradio_chat(
|
212 |
-
message="Warm up",
|
213 |
-
history=[],
|
214 |
-
temperature=0.1,
|
215 |
-
max_new_tokens=10,
|
216 |
-
max_token=100,
|
217 |
-
call_agent=False,
|
218 |
-
conversation=[]
|
219 |
-
)
|
220 |
-
for _ in warm_up:
|
221 |
-
pass
|
222 |
-
except:
|
223 |
-
pass
|
224 |
-
|
225 |
-
print("Launching interface...")
|
226 |
-
demo = create_ui(agent)
|
227 |
-
demo.queue().launch(
|
228 |
-
server_name="0.0.0.0",
|
229 |
-
server_port=7860,
|
230 |
-
show_error=True,
|
231 |
-
share=True
|
232 |
-
)
|
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
|
|
|
|
11 |
|
12 |
+
# ✅ Fix: Add src to Python path
|
13 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# ✅ Persist model cache to Hugging Face Space's /data directory
|
16 |
+
model_cache_dir = "/data/txagent_models"
|
17 |
os.makedirs(model_cache_dir, exist_ok=True)
|
|
|
|
|
|
|
18 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
19 |
os.environ["HF_HOME"] = model_cache_dir
|
|
|
|
|
20 |
|
21 |
from txagent.txagent import TxAgent
|
22 |
|
23 |
def sanitize_utf8(text: str) -> str:
|
24 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
25 |
|
26 |
+
def clean_final_response(text: str) -> str:
|
27 |
+
cleaned = text.replace("[TOOL_CALLS]", "").strip()
|
28 |
+
responses = cleaned.split("[Final Analysis]")
|
29 |
+
|
30 |
+
if len(responses) <= 1:
|
31 |
+
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>"
|
32 |
+
|
33 |
+
panels = []
|
34 |
+
for i, section in enumerate(responses[1:], 1):
|
35 |
+
final = section.strip()
|
36 |
+
panels.append(
|
37 |
+
f"<div style='background:#2B2B2B;color:#E0E0E0;border-radius:12px;margin-bottom:1em;border:1px solid #888;'>"
|
38 |
+
f"<div style='font-size:1.1em;font-weight:bold;padding:0.75em;background:#3A3A3A;color:#fff;border-radius:12px 12px 0 0;'>🧠 Final Analysis #{i}</div>"
|
39 |
+
f"<div style='padding:1em;line-height:1.6;'>{final.replace(chr(10), '<br>')}</div>"
|
40 |
+
f"</div>"
|
41 |
+
)
|
42 |
+
return "".join(panels)
|
43 |
+
|
44 |
+
def file_hash(path):
|
45 |
with open(path, "rb") as f:
|
46 |
return hashlib.md5(f.read()).hexdigest()
|
47 |
|
|
|
|
|
|
|
|
|
48 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
49 |
try:
|
50 |
+
cache_dir = "/data/cache"
|
51 |
+
os.makedirs(cache_dir, exist_ok=True)
|
52 |
h = file_hash(file_path)
|
53 |
+
cache_path = os.path.join(cache_dir, f"{h}.json")
|
54 |
|
55 |
if os.path.exists(cache_path):
|
56 |
return open(cache_path, "r", encoding="utf-8").read()
|
|
|
66 |
with pdfplumber.open(file_path) as pdf:
|
67 |
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
68 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
|
69 |
+
open(cache_path, "w", encoding="utf-8").write(result)
|
|
|
70 |
return result
|
71 |
else:
|
72 |
return json.dumps({"error": f"Unsupported file type: {file_type}"})
|
|
|
77 |
df = df.fillna("")
|
78 |
content = df.astype(str).values.tolist()
|
79 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
80 |
+
open(cache_path, "w", encoding="utf-8").write(result)
|
|
|
81 |
return result
|
82 |
except Exception as e:
|
83 |
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def create_ui(agent: TxAgent):
|
86 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
87 |
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
|
|
|
97 |
conversation_state = gr.State([])
|
98 |
|
99 |
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
|
|
|
100 |
try:
|
101 |
history.append({"role": "user", "content": message})
|
102 |
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
|
103 |
yield history
|
104 |
|
|
|
105 |
extracted_text = ""
|
106 |
if uploaded_files and isinstance(uploaded_files, list):
|
107 |
+
for file in uploaded_files:
|
108 |
+
if not hasattr(file, 'name'):
|
109 |
+
continue
|
110 |
+
path = file.name
|
111 |
+
ext = path.split(".")[-1].lower()
|
112 |
+
json_text = convert_file_to_json(path, ext)
|
113 |
+
extracted_text += sanitize_utf8(json_text) + "\n"
|
114 |
|
115 |
context = (
|
116 |
+
"You are an expert clinical AI assistant. Review this patient's history, medications, and notes, and ONLY provide a final answer summarizing what the doctor might have missed."
|
|
|
|
|
117 |
)
|
118 |
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
|
119 |
|
|
|
120 |
generator = agent.run_gradio_chat(
|
121 |
message=chunked_prompt,
|
122 |
history=[],
|
123 |
temperature=0.3,
|
124 |
+
max_new_tokens=1024,
|
125 |
+
max_token=8192,
|
126 |
call_agent=False,
|
127 |
conversation=conversation,
|
128 |
uploaded_files=uploaded_files,
|
129 |
+
max_round=30
|
130 |
)
|
131 |
|
132 |
+
final_response = ""
|
133 |
for update in generator:
|
134 |
if not update:
|
135 |
continue
|
136 |
+
if isinstance(update, list):
|
137 |
+
for msg in update:
|
138 |
+
if hasattr(msg, "content"):
|
139 |
+
final_response += msg.content
|
140 |
+
elif isinstance(update, str):
|
141 |
+
final_response += update
|
142 |
+
|
143 |
+
history[-1] = {"role": "assistant", "content": final_response.strip()}
|
144 |
+
yield history
|
145 |
+
|
146 |
+
cleaned = final_response.strip().replace("[TOOL_CALLS]", "").strip()
|
147 |
+
history[-1] = {"role": "assistant", "content": cleaned or "❌ No response."}
|
148 |
yield history
|
149 |
|
150 |
except Exception as chat_error:
|
151 |
print(f"Chat handling error: {chat_error}")
|
152 |
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
|
153 |
yield history
|
|
|
|
|
154 |
|
155 |
inputs = [message_input, chatbot, conversation_state, file_upload]
|
156 |
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
|
|
163 |
], inputs=message_input)
|
164 |
|
165 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|